Download Free Nash Equilibria For Quadratic Voting Book in PDF and EPUB Free Download. You can read online Nash Equilibria For Quadratic Voting and write the review.

A group of N individuals must choose between two collective alternatives. Under Quadratic Voting (QV), agents buy votes in favor of their preferred alternative from a clearing house, paying the square of the number of votes purchased; the sum of all votes purchased determines the outcome. We provide the first rigorous results for this mechanism, in a canonical independent private values environment with bounded value distributions. In addition to characterizing the nature of equilibria, we demonstrate that for all bounded value distributions, the utilitarian welfare losses of the mechanism as a proportion of the maximum possible welfare tends to zero as the population sizebecomes large.
Revolutionary ideas on how to use markets to achieve fairness and prosperity for all Many blame today's economic inequality, stagnation, and political instability on the free market. The solution is to rein in the market, right? Radical Markets turns this thinking on its head. With a new foreword by Ethereum creator Vitalik Buterin and virtual reality pioneer Jaron Lanier as well as a new afterword by Eric Posner and Glen Weyl, this provocative book reveals bold new ways to organize markets for the good of everyone. It shows how the emancipatory force of genuinely open, free, and competitive markets can reawaken the dormant nineteenth-century spirit of liberal reform and lead to greater equality, prosperity, and cooperation. Only by radically expanding the scope of markets can we reduce inequality, restore robust economic growth, and resolve political conflicts. But to do that, we must replace our most sacred institutions with truly free and open competition—Radical Markets shows how.
This book is comprised of the latest research into CSS methods, uses, and results, as presented at the 2020 annual conference of the Computational Social Science Society of the Americas (CSSSA). Computational social science (CSS) is the science that investigates social and behavioral dynamics through social simulation, social network analysis, and social media analysis. The CSSSA is a professional society that aims to advance the field of computational social science in all areas, including basic and applied orientations, by holding conferences and workshops, promoting standards of scientific excellence in research and teaching, and publishing research findings and results. The above-mentioned conference was held virtually, October 8 – 11, 2020. What follows is a diverse representation of new results and approaches to using the tools of CSS and agent-based modeling (ABM) in exploring complex phenomena across many different domains. Readers will therefore not only have the results of these specific projects upon which to build, along with a wealth of case-study examples that can serve as meaningful exemplars for new research projects and activities, they will also gain a greater appreciation for the broad scope of CSS.
This book constitutes the refereed proceedings of two workshops held at the 23rd International Conference on Financial Cryptography and Data Security, FC 2019, in St. Kitts, St. Kitts and Nevis, in February 2019.The 20 full papers and 4 short papers presented in this book were carefully reviewed and selected from 34 submissions.The papers feature the outcome of the 4th Workshop on Advances in Secure Electronic Voting, VOTING 2019 and the Third Workshop on Trusted Smart Contracts, WTSC 2019. VOTING covered topics like election auditing, voting system efficiency, voting system usability, and new technical designs for cryptographic protocols for voting systems.WTSC focuses on smart contracts, i.e., self-enforcing agreements in the form of executable programs, and other decentralized applications that are deployed to and run on top of (specialized) blockchains.
We study the performance of the Quadratic Voting (QV) mechanism proposed by Lalley and Weyl (2016) in finite populations of various sizes using three decreasingly analytic but increasingly precise methods with emphasis on examples calibrated to the 2008 gay marriage referendum in California. First, we use heuristic calculations to derive conservative analytic bounds on the constants associated with Lalley and Weyl's formal results on large population convergence. Second, we pair numerical game theory methods with statistical limit results to computationally approximate equilibria for moderate population sizes. Finally, we use purely numerical methods to analyze small populations. The more precise the methods we use, the better the performance of QV appears to be in a wide range of cases, with the analytic bounds on potential welfare typically 1.5 to 3 times more conservative than the results from numerical calculation. In our most precise results, we have not found an example where QV sacrifices more than 10% of potential welfare for any population size. However, we find scenarios in which one-person-one-vote rules outperform QV and also show that convergence to full efficiency in large populations may be much slower with fat tails than with bounded support. The results suggest that in highly unequal societies, 1p1v or QV with artificial currency may give superior efficiency to QV with real currency.