Download Free Narrow Gap Semiconductors Book in PDF and EPUB Free Download. You can read online Narrow Gap Semiconductors and write the review.

This volume forms a solid presentation in several important areas of NGS research, including materials, growth and characterization, fundamental physical phenomena, and devices and applications. It examines the novel material of InAs and its related alloys, heterostructures, and nanostructures as well as more traditional NGS materials such as InSb, PbTe, and HgCdTe. Several chapters cover carbon nanotubes and spintronics, along with spin-orbit coupling, nonparabolicity, and large g-factors. The book also deals with the physics and applications of low-energy phenomena at the infrared and terahertz ranges.
Narrow Gap Semiconductors 1995 contains the invited and contributed papers presented at the Seventh International Conference on Narrow Gap Semiconductors, held in January 1995. The invited review papers provide an overview and the contributed papers provide in-depth coverage of research results across the whole field.
Proceedings of the International Summer School, held in Nimes, France, September, 3-15, 1979
Narrow gap semiconductors obey the general rules of semiconductor science, but often exhibit extreme features of these rules because of the same properties that produce their narrow gaps. Consequently these materials provide sensitive tests of theory, and the opportunity for the design of innovative devices. Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. Device Physics of Narrow Gap Semiconductors, a forthcoming second book, offers descriptions of the materials science and device physics of these unique materials. Topics covered include impurities and defects, recombination mechanisms, surface and interface properties, and the properties of low dimensional systems for infrared applications. This book will help readers to understand not only semiconductor physics and materials science, but also how they relate to advanced opto-electronic devices. The final chapter describes the device physics of photoconductive detectors, photovoltaic infrared detectors, super lattices and quantum wells, infrared lasers, and single photon infrared detectors.
Narrow gap semiconductors have provided an exciting field of research and show a number of extreme physical and material characteristics. They are the established material systems for infrared detectors and emitters, and with new developments in the technology these materials are emerging as a viable route to high speed, low power electronics. New kinds of narrow gap semiconductor, such as graphene and other composite nanocrystals, are also providing renewed interest in the underlying physics. The Thirteenth International Conference on Narrow Gap Semiconductors (NGS-13) was held at the University of Surrey, Guildford, UK in July 2007. The conference brought together experts and young scientists to discuss the latest findings and developments in the field. This book contains the invited and contributed papers which were presented at this meeting and serves to provide a broad overview of the current worldwide activities in narrow gap semiconductor research. The subjects covered are theoretical and material physics of narrow gap semiconductors and quantum heterostructures, spin related phenomenon including carrier dynamics and magnetotransport, carbon nanotubes and graphene as novel narrow gap material, as well as device physics including transistors, mid and far-infrared lasers and detectors.
Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. They often operate at the extremes of the rules of semiconductor science. This book offers clear descriptions of crystal growth and the fundamental structure and properties of these unique materials. Topics covered include band structure, optical and transport properties, and lattice vibrations and spectra. A thorough treatment of the properties of low-dimensional systems and their relation to infrared applications is provided.
This book discusses the latest investigations into the electronic structure of narrow-gap semiconductors in extreme conditions, and describes in detail magnetic field and pressure measurements using two high-quality single crystals: black phosphorus (BP) and lead telluride (PbTe). The book presents two significant findings for BP and PbTe. The first is the successful demonstration of the pressure-induced transition from semiconductor to semimetal in the electronic structure of BP using magnetoresistance measurements. The second is the quantitative estimation of how well the Dirac fermion description works for electronic properties in PbTe. The overviews on BP and PbTe from the point of view of material properties help readers quickly understand the typical electronic character of narrow-gap semiconductor materials, which has recently attracted interest in topological features in condensed matter physics. Additionally the introductory review of the principles and methodology allows readers to understand the high magnetic field and pressure experiments.
Contents:Materials and Related Physics: Magnetic Field and Dimensionality Induced Population Effects in HgSe and HgSe:Fe (O Portugall et al)Growth and in Situ Scanning Tunneling Microscopy Studies of IV–VI Semiconductors (Abstract) (G Springholz)Detectors and Arrays: China's Satellite Project for Earth Observation and Infrared Detection (D-B Kuang)Recent Progress in Quantum Well Infrared Photodetectors and Focal Plane Arrays for LWIR Imaging Applications (S S Li)Infrared Lasers: Mid-Infrared Resonant-Cavity-Based Devices: Of Detectors and Emitters (J Bleuse et al)W Lasers for the Mid-IR (J R Meyer et al)Devices and Related Physics: Optoelectronic Devices from Indium Aluminium Antimonide and Mercury Cadmium Telluride (T Ashley)Three-Terminal Superconductor–Semiconductor Devices (H Takayanagi & T Akazaki)Physics: Coherent Anti-Stokes Raman Scattering in Diluted Magnetic IV–VI Epilayers and Superlattices (H Pascher et al)High Field Cyclotron Resonance in GaSb and Effective Mass at the Γ and L-Points (H Arimoto et al)Quantum Dots: Growth and Characterization of InAs Quantum Dots (N N Ledentsov)Self-Assembled InAs Quantum Boxes: Growth, Intrinsic Properties, Potential Applications (Abstract) (J M Gérard)and other papers Readership: Researchers in the field of semiconductors.
In this monograph, investigations of the performance of narrow-gap semiconductor photodiodes are presented, and recent progress in different IR photodiode technologies is discussed: HgCdTe photodiodes, InSb photodiodes, alternatives to HgCdTe III-V and II-VI ternary alloy photodiodes, lead chalcogenide photodiodes, and a new class of photodiodes based on two-dimensional solids. Investigations of the performance of photodiodes operated in different spectral regions are presented.