Download Free Nanowires And Nanobelts Of Functional Materials Book in PDF and EPUB Free Download. You can read online Nanowires And Nanobelts Of Functional Materials and write the review.

This volume focuses on the synthesis, properties and applications of nanowires and nanobelts based on functional materials. Novel devices and applications made from functional oxide nanowires and nanobelts will be presented first, showing their unique properties and applications.
Volume 1, Metal and Semiconductor Nanowires covers a wide range of materials systems, from noble metals (such as Au, Ag, Cu), single element semiconductors (such as Si and Ge), compound semiconductors (such as InP, CdS and GaAs as well as heterostructures), nitrides (such as GaN and Si3N4) to carbides (such as SiC). The objective of this volume is to cover the synthesis, properties and device applications of nanowires based on metal and semiconductor materials. The volume starts with a review on novel electronic and optical nanodevices, nanosensors and logic circuits that have been built using individual nanowires as building blocks. Then, the theoretical background for electrical properties and mechanical properties of nanowires is given. The molecular nanowires, their quantized conductance, and metallic nanowires synthesized by chemical technique will be introduced next. Finally, the volume covers the synthesis and properties of semiconductor and nitrides nanowires.
Functional Materials from Carbon, Inorganic and Organic Sources: Methods and Advances describes the basic principles, mechanisms and theoretical background of functional materials. Sections cover Carbon-based functional materials, Inorganic functional materials for renewable and sustainable energy applications, and Organic and biological based functional materials. Applications such as energy storage and conversion, electronic and photonics devices, and in medicine are also explored. Sections dive into photovoltaic devices, light emitting devices, energy storage materials and quantum dot devices, solar cell fundamentals and devices, perovskite materials and ceramic thin films. Final sections emphasize green approaches to synthesis in semiconductor nanoparticles, quinolone complexes, biomaterials and biopolymers. - Introduces the reader to a wide range of the most relevant functional materials, including carbon-based materials, inorganic materials for energy applications, and organic and biological based materials - Reviews the synthesis and characterization methods used to create, optimize and analyze functional materials properties - Discusses the use of functional materials to enable emerging technologies, along with remaining barriers to commercial adoption and opportunities
In this book we explore new approaches to understanding the physical and chemical properties of emergent complex functional materials, revealing a close relationship between their structures and properties at the molecular level. The primary focus of this book is on the ability to synthesize materials with a controlled chemical composition, a crystallographic structure, and a well-defined morphology. Special attention is also given to the interplay of theory, simulation and experimental results, in order to interconnect theoretical knowledge and experimental approaches, which can reveal new scientific and technological directions in several fields, expanding the versatility to yield a variety of new complex materials with desirable applications and functions. Some of the challenges and opportunities in this field are also discussed, targeting the development of new emergent complex functional materials with tailored properties to solve problems related to renewable energy, health, and environmental sustainability. A more fundamental understanding of the physical and chemical properties of new emergent complex functional materials is essential to achieving more substantial progress in a number of technological fields. With this goal in mind, the editors invited acknowledged specialists to contribute chapters covering a broad range of disciplines.
Volume 1, Metal and Semiconductor Nanowires covers a wide range of materials systems, from noble metals (such as Au, Ag, Cu), single element semiconductors (such as Si and Ge), compound semiconductors (such as InP, CdS and GaAs as well as heterostructures), nitrides (such as GaN and Si3N4) to carbides (such as SiC). The objective of this volume is to cover the synthesis, properties and device applications of nanowires based on metal and semiconductor materials. The volume starts with a review on novel electronic and optical nanodevices, nanosensors and logic circuits that have been built using individual nanowires as building blocks. Then, the theoretical background for electrical properties and mechanical properties of nanowires is given. The molecular nanowires, their quantized conductance, and metallic nanowires synthesized by chemical technique will be introduced next. Finally, the volume covers the synthesis and properties of semiconductor and nitrides nanowires.
本书叙述了电子显微学的内容,共有12个专题。力图使读者对所叙述的方法有一个概念上的理解,而不是只停留在对理论的堆砌上。
In chapters contributed by 24 university & government laboratories, Nanoengineering of Structural, Functional, and Smart Materials combines wide-ranging research aimed at the development of multifunctional materials that are strong, lightweight, and versatile. This book explores promising and diverse approaches to the design of nanoscale