Download Free Nanotribology And Nanomechanics Book in PDF and EPUB Free Download. You can read online Nanotribology And Nanomechanics and write the review.

This textbook and comprehensive reference source and serves as a timely, practical introduction to the principles of nanotribology and nanomechanics. This 4th edition has been completely revised and updated, concentrating on the key measurement techniques, their applications, and theoretical modeling of interfaces. It provides condensed knowledge of the field from the mechanics and materials science perspectives to graduate students, research workers, and practicing engineers.
The recent emergence and proliferation of proximal probes, e.g. SPM and AFM, and computational techniques for simulating tip-surface interactions has enabled the systematic investigation of interfacial problems on ever smaller scales, as well as created means for modifying and manipulating nanostructures. In short, they have led to the appearance of the new, interdisciplinary fields of micro/nanotribology and micro/nanomechanics. This volume serves as a timely, practical introduction to the principles of nanotribology and nanomechanics and applications to magnetic storage systems and MEMS/NEMS. Assuming some familiarity with macrotribology/mechanics, the book comprises chapters by internationally recognized experts, who integrate knowledge of the field from the mechanics and materials-science perspectives. They cover key measurement techniques, their applications, and theoretical modelling of interfaces, each beginning their contributions with macro- and progressing to microconcepts. After reviewing the fundamental experimental and theoretical aspects in the first part, Nanotribology and Nanomechanics then treats applications. Three groups of readers are likely to find this text valuable: graduate students, research workers, and practicing engineers. It can serve as the basis for a comprehensive, one- or two-semester course in scanning probe microscopy; applied scanning probe techniques; or nanotribology/nanomechanics/nanotechnology, in departments such as mechanical engineering, materials science, and applied physics. With a Foreword by Physics Nobel Laureate Gerd Binnig Dr. Bharat Bhushan is an Ohio Eminent Scholar and The Howard D. Winbigler Professor in the Department of Mechanical Engineering, Graduate Research Faculty Advisor in the Department of Materials Science and Engineering, and the Director of the Nanotribology Laboratory for Information Storage & MEMS/NEMS (NLIM) at the Ohio State University, Columbus, Ohio. He is an internationally recognized expert of tribology and mechanics on the macro- to nanoscales, and is one of the most prolific authors. He is considered by some a pioneer of the tribology and mechanics of magnetic storage devices and a leading researcher in the fields of nanotribology and nanomechanics using scanning probe microscopy and applications to micro/nanotechnology. He is the recipient of various international fellowships including the Alexander von Humboldt Research Prize for Senior Scientists, Max Planck Foundation Research Award for Outstanding Foreign Scientists, and the Fulbright Senior Scholar Award.
The comprehensive reference and textbook serves as a timely, practical introduction to the principles of nanotribology and nanomechanics. Assuming some familiarity with macroscopic tribology, the book comprises chapters by internationally recognized experts, who integrate knowledge of the field from the mechanics and materials-science perspectives. They cover key measurement techniques, their applications, and theoretical modelling of interfaces, each beginning their contributions with macro- and progressing to microconcepts.
The comprehensive reference and textbook serves as a timely, practical introduction to the principles of nanotribology and nanomechanics. Assuming some familiarity with macroscopic tribology, the book comprises chapters by internationally recognized experts, who integrate knowledge of the field from the mechanics and materials-science perspectives. They cover key measurement techniques, their applications, and theoretical modelling of interfaces, each beginning their contributions with macro- and progressing to microconcepts.
This second edition of Handbook of Micro/Nanotribology addresses the rapid evolution within this field, serving as a reference for the novice and the expert alike. Two parts divide this handbook: Part I covers basic studies, and Part II addresses design, construction, and applications to magnetic storage devices and MEMS. Discussions include: surface physics and methods for physically and chemically characterizing solid surfaces roughness characterization and static contact models using fractal analysis sliding at the interface and friction on an atomic scale scratching and wear as a result of sliding nanofabrication/nanomachining as well as nano/picoindentation lubricants for minimizing friction and wear surface forces and microrheology of thin liquid films measurement of nanomechanical properties of surfaces and thin films atomic-scale simulations of interfacial phenomena micro/nanotribology and micro/nanomechanics of magnetic storage devices This comprehensive book contains 16 chapters contributed by more than 20 international researchers. In each chapter, the presentation starts with macroconcepts and then lead to microconcepts. With more than 500 illustrations and 50 tables, Handbook of Micro/Nanotribology covers the range of relevant topics, including characterization of solid surfaces, measurement techniques and applications, and theoretical modeling of interfaces. What's New in the Second Edition? New chapters on: AFM instrumentation Surface forces and adhesion Design and construction of magnetic storage devices Microdynamical devices and systems Mechanical properties of materials in microstructure Micro/nanotribology and micro/nanomechanics of MEMS devices
Since January 1990, when the first edition ofthis first-of-a-kind book appeared, there has been much experimental and theoretical progress in the multi disciplinary subject of tribology and mechanics of magnetic storage devices. The subject has matured into a rigorous discipline, and many university tribology and mechanics courses now routinely contain material on magnetic storage devices. The major growth in the subject has been on the micro- and nanoscale aspects of tribology and mechanics. Today, most large magnetic storage industries use atomic force microscopes to image the magnetic storage components. Many companies use variations of AFMs such as friction force microscopes (FFMs) for frictional studies. These instruments have also been used for studying scratch, wear, and indentation. These studies are valuable in the fundamental understanding of interfacial phenomena. In the second edition, I have added a new chapter, Chapter 11, on micro and nanoscale aspects of tribology and mechanics of magnetic storage compo nents. This chapter presents the state of the art of the micro/nanotribology and micro/nanomechanics of magnetic storage components. In addition, typographical errors in Chapters 1 to 10 and the appendixes have been corrected. These additions update this book and make it more valuable to researchers of the subject. I am grateful to many colleagues and particularly to my students, whose work is reported in Chapter 11. I thank my wife, Sudha, who has been forbearing during the progress of the research reported in this chapter.
Drawn from presentations at a recent National Science Foundation Summer Institute on Nanomechanics, Nanomaterials, and Micro/Nanomanufacturing, Micro- and Nanoscale Phenomena in Tribology explores the convergence of the multiple science and engineering disciplines involved in tribology and the connection from the macro to nano world. Written by specialists from computation, materials science, mechanical engineering, surface physics, and chemistry, each chapter provides up-to-date coverage of both basic and advanced topics and includes extensive references for further study. After discussing the evolution of tribology in the micro and nano world, the book describes contact conditions spanning between macroscale and nanoscale contacts. It presents an overview of fundamental continuum treatments of interfacial contact and lubrication under a wide range of conditions, including novel advances in contact simulation. It also gives a thorough account of the nature of surface energies and forces in nanostructures as well as adhesion in dry and wet environments. The book then explains how to perform friction measurements at the nanoscale and interpret friction data before demonstrating how micro- and nanotextured surfaces affect adhesion, friction, and wetting. The final chapters emphasize the importance of surface chemistry and molecular dynamics simulation in tribology. With numerous examples and figures throughout, this volume presents a thorough account of important advancements in tribology that offer insight into micro- and nanoscale phenomena. By enabling a better understanding of fundamental micro- and nanoscale interactions, the book helps readers effectively design and fabricate durable tribological components for various engineering and biological systems.
This book provides an updated review on the development of scanning probe microscopy and related techniques, and the availability of computational techniques not even imaginable a few decades ago. The 36 chapters cover instrumental aspects, theoretical models and selected experimental results, thus offering a broad panoramic view on fundamental issues in nanotribology which are currently being investigated. Compared to the first edition, several topics have been added, including triboluminescence, graphene mechanics, friction and wear in liquid environments, capillary condensation, and multiscale friction modeling. Particular care has been taken to avoid overlaps and guarantee the independence of the chapters. In this way, our book aims to become a key reference on this subject for the next five to ten years to come.
Multiscale Dissipative Mechanisms and Hierarchical Surfaces covers the rapidly developing topics of hierarchical surfaces, roughness-induced superhydrophobicity and biomimetic surfaces. The research in these topics has been progressing rapidly in the recent years due to the advances in the nanosciences and surfaces science and due to potential applications in nanotechnology. The first in its field, this monograph provides a comprehensive review of these subjects and presents the background introduction as well as recent and new results in the area.