Download Free Nanotechnology In Health Care Book in PDF and EPUB Free Download. You can read online Nanotechnology In Health Care and write the review.

Nanotechnologies are among the fastest growing areas of scientific research, and this is expected to have a substantial impact on human health care, especially in biomedical applications and nanomedicine now and in the near future. In the present scenario, nanotechnology is spreading its wings to address the key problems in the field of nanomedicine and human health care by improving diagnosis, prevention, treatment, and tissue engineering. This book provides an in-depth investigation of nanotechnology-based therapy and recent advancements in this field for revolutionizing the treatments for various fatal diseases, including cardiovascular and infectious diseases.
NANOMATERIALS AND NANOTECHNOLOGY IN MEDICINE A comprehensive introduction to nanomaterials and their application in the field of medicine The use of nanotechnology and nanomaterials more generally is an emerging field that has generated a lot of interest in the last few years. To this point, there have been few books that deal with the recent advances in nanomaterials or nanocomposites in the medical discipline. Intended as a one-stop reference, Nanomaterials and Nanotechnology in Medicine provides the reader with the most-up-to-date and comprehensive exploration of the field of nanomedicine. The scope of the topic is huge, with nano applications in every medical specialization—from diagnostics to pharmaceuticals, from biological therapies to surgical devices, and from regenerative therapies to gene therapy. As such, this volume provides the most comprehensive coverage of this intriguing field of study. Nanomaterials and Nanotechnology in Medicine readers will also find: An application-oriented book dedicated towards helping researchers find solutions to both fundamental and applied problems Chapters written by leading researchers from industry, academy, government, and private research institutions across the globe Nanomaterials and Nanotechnology in Medicine is a useful reference for medical doctors, medical practitioners, post-doctoral research fellows, senior graduate students, and medical libraries.
Nanotechnology is a multidisciplinary field that is revolutionizing the way we detect and treat damage to the human body. Nanomedicine applies nanotechnology to highly specific medical interventions for the prevention, diagnosis, and treatment of diseases. They are increasingly being used to overcome biological barriers in the body to improve the way we deliver compounds to specific tissues and organs. In particular, nanomedicines have been shown to be beneficial for stabilizing therapeutic compounds, overcoming obstacles to cellular and tissue uptake, and improving biodistribution of compounds to target sites in vivo. Nanomedicines have demonstrated significant therapeutic advantages for a multitude of biomedical applications, however the clinical translation of these nanotechnology platforms has not progressed as quickly as the plethora of positive results would have suggested. Understanding the advances in nanomedicine to date and the challenges that still need to be overcome, will allow future research to improve on existing platforms and to address the current translational and regulatory limitations. This eBook “Advances and Challenges in Nanomedicine” has brought together experts in the fields of nanomedicine, nanotechnology, nanotoxicology, pharmaceutics, manufacturing, and translation to discuss the application of nanotechnology to drug delivery. This information is presented as original research, opinion, perspective, and review articles. The goal of this eBook is to generate collaborative discussion on the current status, general trends, challenges, strategies, and future direction of pharmaceutical nanotechnology, as well as highlight current and emerging nanoparticulate platforms with potential medical applications.
Provides a broad range of information from basic principles to advanced applications of biosensors and nanomaterials in health care diagnostics This book utilizes a multidisciplinary approach to provide a wide range of information on biosensors and the impact of nanotechnology on the development of biosensors for health care. It offers a solid background on biosensors, recognition receptors, biomarkers, and disease diagnostics. An overview of biosensor-based health care applications is addressed. Nanomaterial applications in biosensors and diagnostics are included, covering the application of nanoparticles, magnetic nanomaterials, quantum dots, carbon nanotubes, graphene, and molecularly imprinted nanostructures. The topic of organ-specific health care systems utilizing biosensors is also incorporated to provide deep insight into the very recent advances in disease diagnostics. Biosensors and Nanotechnology: Applications in Health Care Diagnostics is comprised of 15 chapters that are presented in four sections and written by 33 researchers who are actively working in Germany, the United Kingdom, Italy, Turkey, Denmark, Finland, Romania, Malaysia and Brazil. It covers biomarkers in healthcare; microfluidics in medical diagnostics; SPR-based biosensor techniques; piezoelectric-based biosensor technologies; MEMS-based cell counting methods; lab-on-chip platforms; optical applications for cancer cases; and more. Discusses the latest technology and advances in the field of biosensors and their applications for healthcare diagnostics Particular focus on biosensors for cancer Summarizes research of the last 30 years, relating it to state-of-the-art technologies Biosensors and Nanotechnology: Applications in Health Care Diagnostics is an excellent book for researchers, scientists, regulators, consultants, and engineers in the field, as well as for graduate students studying the subject.
Nanomedicine is the field of science that deals with organic applications of medicine at the nano-scale level. It primarily addresses finding, anticipating, and treating sickness, as well as using nanotechnology to assist in controlling human frameworks at the cellular level. The nature of nanotechnology allows it to address numerous medical issues in humans. This book offers comprehensive information to better comprehend and apply multifunctional nanoparticles in nanomedicine, and thus open avenues in the field. Medicating at the nanolevel is an exceptional therapeutic avenue, as it avoids symptoms associated with conventional medicines. This book investigates recent insights into structuring novel drug delivery frameworks. It concentrates on the physical characteristics of drug delivery transporters, and the preliminary procedures involved in their use. The book offers in-depth detail that benefits academics and researchers alike, containing broad research from experts in the field, and serves as a guide for students and researchers in the field of nanomedicine, drug delivery, and nanotechnology.
Nanotechnology and Nanomaterials in the Treatment of Life-threatening Diseases takes a scientific approach to nanotechnology and nanomaterials applications in medicine, while also explaining the core biological principles for an audience of biomedical engineers, materials scientists, pharmacologists, and medical diagnostic technicians. The book is structured by major disease groups, offering a practical, application-based focus for scientists, engineers, and clinicians alike. The spectrum of medical applications is explored, from diagnostics and imaging to drug delivery, monitoring, therapies, and disease prevention. It also focuses specifically on the synthesis of nanomaterials and their potential health risks (particularly toxicity). Nanomedicine — the application of nanomaterials and devices for addressing medical problems — has demonstrated great potential for enabling improved diagnosis, treatment, and monitoring of many serious illnesses, including cancer, cardiovascular and neurological disorders, HIV/AIDS, and diabetes, as well as many types of inflammatory and infectious diseases. Gain an understanding of how nanotechnologies and nanomaterials can be deployed in the fight against the major life-threatening diseases: cancer, neurological disorders (including Alzheimer's and Parkinson's), cardiovascular diseases, and HIV/AIDS Discover the latest developments in nanomedicine, from therapies and drug delivery to diagnostics and disease prevention The authors cover the health risks of nanomaterials as well as their benefits, considering toxicity and potential carcinogens
This book describes the medical applications of inorganic nanoparticles. Nanomedicine is a relatively advanced field, which enhances the treatment of various diseases, offering new options for overcoming the problems associated with the use of conventional medicines. Discussing the toxicological and safety aspects associated with medical applications of nanoparticles, the book presents the latest research on topics such as emerging nanomaterials for cancer therapy, applications of nanoparticles in dentistry, and fluoride nanoparticles for biomedical applications, and also includes chapters on the use of nanoparticles such as silver and gold. /div
Nanotechnologies are among the fastest growing areas of scientific research, and this is expected to have a substantial impact on human health care, especially in biomedical applications and nanomedicine now and in the near future. In the present scenario, nanotechnology is spreading its wings to address the key problems in the field of nanomedicin
Nanoparticles in Analytical and Medical Devices presents the latest information on the use of nanoparticles for a diverse range of analytical and medical applications. Covers basic principles, proper use of nanoparticles in analytical and medical applications, and recent progress in the field. This comprehensive reference helps readers grasp the full potential of nanoparticles in their analytical research or medical practice. Chapters on cutting-edge topics bring readers up to date on the latest research and usage of nanoparticles, and a chapter on commercially available devices that utilize nanoparticles guides readers in overcoming issues with marketing biodevices. Synthesizes nanoparticle conjugation and other critical methods Covers nanoparticles in analytical methods and real analytical devices currently used in the medical field Provides useful new information not covered in the current literature in chapters on surface chemical functionalization for bio-immobilization and nanoparticle production from natural sources
The second edition of Nanotechnology in Biology and Medicine is intended to serve as an authoritative reference source for a broad audience involved in the research, teaching, learning, and practice of nanotechnology in life sciences. This technology, which is on the scale of molecules, has enabled the development of devices smaller and more efficient than anything currently available. To understand complex biological nanosystems at the cellular level, we urgently need to develop a next-generation nanotechnology tool kit. It is believed that the new advances in genetic engineering, genomics, proteomics, medicine, and biotechnology will depend on our mastering of nanotechnology in the coming decades. The integration of nanotechnology, material sciences, molecular biology, and medicine opens the possibility of detecting and manipulating atoms and molecules using nanodevices, which have the potential for a wide variety of biological research topics and medical uses at the cellular level. This book presents the most recent scientific and technological advances of nanotechnology for use in biology and medicine. Each chapter provides introductory material with an overview of the topic of interest; a description of methods, protocols, instrumentation, and applications; and a collection of published data with an extensive list of references for further details. The goal of this book is to provide a comprehensive overview of the most recent advances in instrumentation, methods, and applications in areas of nanobiotechnology, integrating interdisciplinary research and development of interest to scientists, engineers, manufacturers, teachers, and students.