Download Free Nanotechnology Based Precision Tools For The Detection And Treatment Of Cancer Book in PDF and EPUB Free Download. You can read online Nanotechnology Based Precision Tools For The Detection And Treatment Of Cancer and write the review.

This book discusses emerging nanotechnology-based tools that have the potential to dramatically impact cancer research, diagnostics, and treatment. Cancer is a complex, devastating, and debilitating disease and, although much progress has been made, novel, more effective diagnostic and treatment options are still needed, especially for advanced cancers. The ultimate goal is to detect cancer early and non-invasively and to provide efficacious and targeted precision treatments that cause fewer harmful side effects. This book explains how nanotechnology can exploit the size-, shape-, and composition-dependent properties of nanomaterials to provide novel tools for precision cancer medicine. It will be of interest to researchers and professionals working in the fields of chemistry, biology, materials science and engineering, and medicine who want to learn more about this fascinating and fast-paced area of research.
Advances in Cancer Research, Volume 139, provides invaluable information on the exciting and fast-moving field of cancer research. Original reviews are presented on a variety of topics relating to the rapidly developing intersection between nanotechnology and cancer research, with unique sections in the new release focusing on Exosomes as a theranostic for lung cancer, Nanotechnology and cancer immunotherapy, Ultrasound imaging agents and delivery systems, Dendronized systems for the delivery of chemotherapeutics, Thermosensitive liposomes for image-guided drug delivery, Supramolecular Chemistry in Tumor Analysis and Drug Delivery, Gold nanoparticles for delivery of cancer therapeutics, and Single cell barcode microchip for cancer research and therapy. - Provides the latest information on cancer research - Offers outstanding and original reviews on a range of cancer research topics - Serves as an indispensable reference for researchers and students alike
This book is the third volume on this subject and focuses on the recent advances of nanopharmaceuticals in cancer, dental, dermal and drug delivery applications and presents their safety, toxicity and therapeutic efficacy. The book also includes the transport phenomenon of nanomaterials and important pathways for drug delivery applications. It goes on to explain the toxicity of nanoparticles to different physiological systems and methods used to assess this for different organ systems using examples of in vivo systems.
This book offers essential information on basic and translational research in gastric cancer, while also illustrating potential opportunities for its application in clinical practice. Gastric cancer is the fourth-most-common cancer globally and the second-leading cause of cancer deaths. It is known to be a heterogeneous disease with varied responses to “one-size-fits-all” treatments. Expanding our knowledge of cancer cell genetics may help us to explore more effective treatments in gastric cancer. The research on molecular mechanisms and its clinical applications, both presented here, will help readers gain an in-depth understanding of gastric cancer and its effective treatment. The book’s four sections cover personalized medicine, precise regional therapy, immunotherapy and nanomedicine in gastric cancer. Each part presents the state of art, recent advances and the authors’ experiences. Moreover, several interesting cases are described to demonstrate how gastric cancer patients benefit from translational research. This informative and attractively presented book on precision treatment in gastric cancer, including experimental findings and clinical treatment options, offers a valuable resource for oncologists and graduate students working in the field of gastric cancer.
The book explores the phenomenon of surface-enhanced Raman scattering (SERS), the huge amplification of Raman signal from molecules in the proximity of a metallic nanostructured surface, allowing readers to gain an in-depth understanding of the mechanisms affecting the spectroscopic response of SERS-active systems for effective applications. SERS spectroscopy is an ultrasensitive analytical technique with great potential for applications in the field of biophysics and nanomedicine. As examples, the author presents the design of nanocolloid-based SERS-active substrates for molecular sensing and of a folate-based SERS-active nanosensor capable of selectively interacting with cancer cells, enabling cancer diagnostics and therapy at the single-cell level. The author also suggests novel paths for the systematization of the SERS nanosystem design and experimental protocols to maximize sensitivity and reproducibility, which is essential when real-world biomedical applications are the goal of the study. With a combined approach, both fundamental and applied, and a detailed analysis of the state of the art, this book provides a valuable overview both for students new to SERS spectroscopy and for experts in the field.
This book is the first to focus specifically on cancer nanotheranostics. Each of the chapters that make up this comprehensive volume is authored by a researcher, clinician, or regulatory agency member known for their expertise in this field. Theranostics, the technology to simultaneously diagnose and treat a disease, is a nascent field that is growing rapidly in this era of personalized medicine. As the need for cost-effective disease diagnosis grows, drug delivery systems that can act as multifunctional carriers for imaging contrast and therapy agents could provide unique breakthroughs in oncology. Nanotechnology has enabled the development of smart theranostic platforms that can concurrently diagnose disease, start primary treatment, monitor response and initiate secondary treatments if required. In oncology, chemotherapeutics have been routinely used. Some drugs have proven effective but all carry risks of adverse side effects. There is growing interest in using remotely triggered drug delivery systems to limit cytotoxicity in the diseased area. This book reviews the use of theranostic nanoparticles for cancer applications over the past decade. First, it briefly discusses the challenges and limitations of conventional cancer treatments, and presents an overview of the use of nanotechnology in treating cancer. These introductory chapters are followed by those exploring cancer diagnosis and a myriad of delivery methods for nanotherapeutics. The book also addresses multifunctional platforms, treatment monitoring, and regulatory considerations. As a whole, the book aims to briefly summarize the development and clinical potential of various nanotheranostics for cancer applications, and to delineate the challenges that must be overcome for successful clinical development and implementation of such cancer theranostics.
Nanobiomaterials Science, Development and Evaluation examines the practical aspects of producing nanostructured biomaterials for a range of applications. With a strong focus on materials, such as metals, ceramics, polymers, and composites, the book also examines nanostructured coatings and toxicology aspects. Chapters in Part One look at materials classes and their synthesis with information on all major material groups. Part Two focuses on nanostructured coatings and practical aspects associated with the use of nanobiomaterials in vivo. This book brings together the work of international contributors who are actively engaged on the forefront of research in their respective disciplines, and is a valuable resource for materials scientists in academia, industry, and all those who wish to broaden their knowledge in the allied field. - Focuses on the synthesis and evaluation techniques for a range of nanobiomaterials - Examines nanostructured inorganic coatings for biomaterials - Discusses issues related to the toxicology of nanobiomaterials - Presents the practical aspects of nanobiomaterials
The complexity of cancer demands an integrated approach from both a cancer biology standpoint and a pharmaceutical basis to understand the different anticancer modalities. Current research has been focused on conventional and newer anticancer modalities, recent discoveries in cancer research, and also the advancements in cancer treatment. There is a current need for more research on the advances in cancer therapeutics that bridge the gap between basic research (pharmaceutical drug development processes, regulatory issues, and translational experimentation) and clinical application. Recent promising discoveries such as immunotherapies, promising therapies undergoing clinical trials, synthetic lethality, carbon beam radiation, and other exciting targeted therapies are being studied to improve and advance the studies of modern cancer treatment. The Handbook of Research on Advancements in Cancer Therapeutics serves as a comprehensive guide in modern cancer treatment by combining and merging the knowledge from both cancer biology and the pharmacology of anticancer modalities. The chapters come from multi-disciplinary backgrounds, including scientists and clinicians from both academia and various industries, to discuss nascent personalized therapies and big data-driven cancer treatment. While highlighting topic areas that include cancer prevention, cancer therapeutics, and cancer treatments through the lenses of technology, medicine/drugs, and alternate therapies, this book is ideally intended for oncologists, radiation oncologists, surgical oncologists, and cancer biologists, along with practitioners, stakeholders, researchers, academicians, and students who are interested in understanding the most fundamental aspects of cancer and the available therapeutic opportunities.
The response to environmental and internal stimuli is one of the basic characteristics of living organisms. Inspired by this natural strategy and fast-developing nanotechnology and materials science, stimuli-responsive nanomedicine has emerged as an active and important field of nanomedicine. This book offers a fundamental and comprehensive overview of stimuli-responsive nanomedicine and compiles and details the recent cutting-edge findings and most impressive achievements in biomedical applications, from a pharmaceutical science perspective, making it the first book of its kind in this field. By providing readers a broad and in-depth coverage of endogenous and exogenous stimuli as well as their applicable nanomedicines, this book is valuable for students, researchers, and educators in biomedical sciences or anyone interested in this burgeoning field.
Nanostructures for Antimicrobial Therapy discusses the pros and cons of the use of nanostructured materials in the prevention and eradication of infections, highlighting the efficient microbicidal effect of nanoparticles against antibiotic-resistant pathogens and biofilms. Conventional antibiotics are becoming ineffective towards microorganisms due to their widespread and often inappropriate use. As a result, the development of antibiotic resistance in microorganisms is increasingly being reported. New approaches are needed to confront the rising issues related to infectious diseases. The merging of biomaterials, such as chitosan, carrageenan, gelatin, poly (lactic-co-glycolic acid) with nanotechnology provides a promising platform for antimicrobial therapy as it provides a controlled way to target cells and induce the desired response without the adverse effects common to many traditional treatments. Nanoparticles represent one of the most promising therapeutic treatments to the problem caused by infectious micro-organisms resistant to traditional therapies. This volume discusses this promise in detail, and also discusses what challenges the greater use of nanoparticles might pose to medical professionals. The unique physiochemical properties of nanoparticles, combined with their growth inhibitory capacity against microbes has led to the upsurge in the research on nanoparticles as antimicrobials. The importance of bactericidal nanobiomaterials study will likely increase as development of resistant strains of bacteria against most potent antibiotics continues. - Shows how nanoantibiotics can be used to more effectively treat disease - Discusses the advantages and issues of a variety of different nanoantibiotics, enabling medics to select which best meets their needs - Provides a cogent summary of recent developments in this field, allowing readers to quickly familiarize themselves with this topic area