Download Free Nanotechnology Applications In Energy Drug And Food Book in PDF and EPUB Free Download. You can read online Nanotechnology Applications In Energy Drug And Food and write the review.

Applications of nanotechnology are the remarkable sizes dependent on physiochemical properties of nanomaterials that have led to the developed protocols for synthesizing nanomaterials over a range of size, shapes and chemical compositions. Nanomaterials are normally powders composed of nanoparticles which exhibit properties that are different from powders. Nanotechnology is the engineering of functional systems at the molecular scale with their wide applications in energy sector, including -but not limited to- energy resources, energy conversion, energy storage, and energy usage; drug delivery systems including- safety concerns, perspective, challenges, target therapeutics for cancer, neurodegenerative diseases and other human diseases, nanomaterials based tissue engineering; and food sectors including to- food safety and quality, opportunities, challenges, nanomaterials based enhancing food packing, and determination of foodborne pathogens, agro and marine food, analysis of market, regulations and future prospects. The utilization of nanotechnology in the energy field will be emphasized and highlighted, in accordance to their prominent and high impact in this particular field. Recent trends and significant benefits of nanotechnology in the energy field will be revealed to the readers, and their promising advanced applications will be discussed. The current drug discovery paradigm constantly needs to improve, enhance efficiency and reduce time to the market on the basis of designing new drug discovery, drug delivery and pharmaceutical manufacturing. In this book will be highlighted nanotechnology based drug delivery is an important aspect of medicine, as more potent and specific drugs that are particularly discussed the understanding of disease pathways. Several biomaterials can be applied to small-molecule drugs as controlled release reservoirs for drug delivery and provide new insights into disease processes, thus understanding the mechanisms of action of drugs. Applications of food nanotechnology are an area of emerging interest for the food industry, for the reason, in this book will be given more priority to discuss the uses of nanomaterials for food packing, food safety and quality, and to remove the contaminated or spoiled by foodborne pathogens. And also nanotechnology based food products will be discussed how making them tastier, healthier, and more nutritious such as vitamins, to reduce fat content, and to ensure they do not degrade during a product’s shelf life. Nanotechnology is basically the uses of nanomaterials, devices and systems through the control of matter on the nanometer scale. Multidisciplinary studies are required the technology for discovery and moving so fast from concept to the reality. Nanotechnology always not only provided more benefits in energy, drugs and food products but also provided significantly benefits around multidisciplinary field applications.
Nanotechnology Applications in Food: Flavor, Stability, Nutrition, and Safety is an up-to-date, practical, applications-based reference that discusses the advantages and disadvantages of each application to help researchers, scientists, and bioengineers know what and what not to do to improve and facilitate the production of food ingredients and monitor food safety. The book offers a broad spectrum of topics trending in the food industry, such as pharmaceutical, biomedical, and antimicrobial approaches in food, highlighting current concerns regarding safety, regulations, and the restricted use of nanomaterials. - Includes how nanobiosensors are useful for the detection of foodborne pathogens - Discusses applications of nanotechnology from flavor and nutrition, to stability and safety in packaging - Includes nano and microencapsulation, nanoemulsions, nanosensors, and nano delivery systems - Identifies practical applications of nanoscience for use in industry today
Handbook of Nanotechnology Applications: Environment, Energy, Agriculture and Medicine presents a comprehensive overview on recent developments and prospects surrounding nanotechnology use in water/wastewater separation and purification, energy storage and conversion, agricultural and food process, and effective diagnoses and treatments in medical fields. The book includes detailed overviews of nanotechnology, including nanofiltration membrane for water/wastewater treatment, nanomedicine and nanosensor development for medical implementation, advanced nanomaterials of different structural dimensions (0D, 1D, 2D and 3D) for energy applications, as well as food and agricultural utilization. Other sections discuss the challenges of lab-based research transitioning towards practical industrial use. - Helps scientists and researchers quickly learn and understand the key role of nanotechnology in important industrial applications - Takes an interdisciplinary approach, demonstrating how nanotechnology is being used in a wide range of industry sectors - Outlines the role nanotechnology plays in creating safer, cheaper and more energy-efficient projects and devices
The uses of nanotechnologies continue to rise exponentially. Due to their multifaceted nature, nanomaterials have a vast amount of potential uses in various scientific professions. Professionals in sectors including agriculture, nutrition, and healthcare are discovering the numerous benefits that nanomaterials carry when applied to traditional practices. In order to understand the dynamic properties of nanomaterials and how to utilize them in specific fields, significant research is required. Applications of Nanomaterials in Agriculture, Food Science, and Medicine is an essential reference source that discusses the emerging development of nanotechnology in various sectors of the scientific community as well as the current benefits and future uses. Industries that the book covers include energy storage and renewable energy, environmental science and wastewater treatment, food and agriculture, and medicine and bioinformatics. This book is ideally designed for researchers, engineers, practitioners, industrialists, educators, strategists, policymakers, scientists, and students seeking coverage on the strategic role of nanomaterials in these imperative fields.
Highlights the latest developments and advances in the field of nanoscience and nanotechnology and their applications in the design and development of material science and devices, energy, drug delivery, cosmetics, biology, biotechnology, tissue engineering, bioinformatics, information technology, agriculture and food, environmental protection, health risk, ethics, and regulations.
Nanotechnology is key to the design and manufacture of the new generation of cosmetics. Nanotechnology can enhance the performance and properties of cosmetics, including colour, transparency, solubility, texture, and durability. Sunscreen products, such as UV nano-filters, nano-TiO2 and nano-ZnO particles, can offer an advantage over their traditional counterparts due to their broad UV-protection and non-cutaneous side effects. For perfumes, nano-droplets can be found in cosmetic products including Eau de Toilette and Eau de Parfum. Nanomaterials can also be used in cosmetics as transdermal drug delivery systems. By using smart nanocontainers, active compounds such as vitamins, antioxidants, nutrients, and anti-inflammatory, anti-infective agents, can be delivered effectively. These smart nanocontainers are typically related with the smart releasing property for their embedded active substances. These smart releases could be obtained by using the smart coatings as their outer nano-shells. These nano-shells could prevent the direct contact between these active agents and the adjacent local environments. Nanocosmetics: Fundamentals, Applications and Toxicity explores the formulation design concepts and emerging applications of nanocosmetics. The book also focuses on the mitigation or prevention of their potential nanotoxicity, potential global regulatory challenges, and the technical challenges of mass implementation. It is an important reference source for materials scientists and pharmaceutical scientists looking to further their understanding of how nanotechnology is being used for the new generation of cosmetics. - Outlines the major fabrication and formulation design concepts of nanoscale products for cosmetic applications - Explores how nanomaterials can safely be used for various applications in cosmetic products - Assesses the major challenges of using nanomaterials for cosmetic applications on a large scale
Bionanotechnology: Emerging Applications of Bionanomaterials highlights a wide range of industrial applications using bionanotechnologies, with biomedical applications prominent amongst these, including drug delivery, tissue engineering, wound healing, medical implants, medical diagnostics and therapy. Other key areas include energy harvesting and storage, water/waste treatment, papermaking, textiles, construction industry, automotive, aerospace. This book is a valuable resource for all those seeking to gain a fundamental understanding of how bionanomaterials are used in a variety of industry sectors. Bionanomaterials are molecular materials composed partially or completely of biological molecules - such as proteins, enzymes, viruses, DNA and biopolymers - as well as metal, metal oxides, and carbon nanomaterials. Bionanomaterials have drawn much attention for their use in a wide range of industrial applications, including scaffolds, dental implants, drug delivery, dialysis, biobatteries, biofuel cells, air purification, and water treatment. - Assesses which bionanomaterial types are particularly suited to particular application areas - Shows how bionanomaterials are being used for biotechnology, biomedicine, energy production, energy storage, and environmental remediation applications - Highlights the challenges and interdisciplinary perspectives of bionanomaterials in science, biology, engineering, medicine, and technology, incorporating both fundamentals and applications
Food scarcity and insecurity is an alarming issue throughout the world. Postharvest loss due to both mechanical damage and microbial spoilage significantly influences the shelf life and hence the availability of agricultural produce. Once initiated, the microbial spoilage can make bulk quantity of a given agricultural product unacceptable for human consumption, and several methods have already been used to try to manage this. Considering the limited success of the available methods, there is increasing interest in exploring nanotechnological methods. These methods are being considered for both the development of various platforms for antimicrobial/barrier packaging applications that minimize the contact of agricultural produce with the external environment, and also for design sensors to ensure food safety and quality. The impact of various nano-systems developed through material engineering on the shelf-life enhancement and storage of fresh horticultural produce will have revolutionary effects on post-harvest management in the coming years. Hence, Postharvest Nanotechnology for Fresh Horticultural Produce has been edited to advance understanding of material development, intelligent selection of nanomaterials to ensure the nontoxic nature, and future perspectives of nanotechnology on postharvest produce. This includes various types of nanoparticles exploited for the postharvest management, their mechanism of action, varied applications and material engineering, along with natural products including essential oils and plant bioactives, modelling of various tailor-made materials to meet the required properties of the packed food, advancements in the nanotechnological applications for the minimally processed food, and the toxicity concerns. Key Features: · Describes advances in nanotechnology for postharvest management · Includes extensive details on the applications of material engineering for post-harvest applications using nanotechnology and future aspects · Provides extensive data on the types of nanomaterials used and the fabrication methods employed for the design of tailor-made products for the post-harvest management This book reviews the current scientific advancements and future prospects of the nanotechnological interventions in meeting the quality and quantity standards of the horticultural produce and minimally processed food and will be a valuable reference for beginners, researchers, subject experts, and industrialists.
As nanoscale research continues to advance, scientists and engineers are developing new applications for many different disciplines, including environmental remediation and energy optimization. Nanotechnology Applications for Improvements in Energy Efficiency and Environmental Management combines up-to-date research findings and relevant theoretical frameworks on the subject of micro-scale technologies being used to promote environmental sustainability. Highlighting the impacts this technology has on energy production and remediation, this book is an all-inclusive reference source for professionals and researchers interested in understanding the multi-disciplinary applications of nanotechnology and nanoscience.
Nanoparticles are revolutionizing and helping to improve every sector including engineering, medicine, food safety, transportation, energy, and environmental science. To ensure industries take full advantage of the opportunities nanoparticles provide, further study on the advancements and challenges within the field is required. Diversity and Applications of New Age Nanoparticles considers new developments and applications of nanoparticles and addresses the development of new materials, synthesis routes, and emerging research in this field. Covering key topics such as antibiotics, thin films, battery technologies, and composites, this premier reference source is ideal for industry professionals, computer scientists, policymakers, engineers, pharmacists, medical professionals, researchers, scholars, practitioners, instructors, and students.