Download Free Nanotechnology And Drug Delivery Volume One Book in PDF and EPUB Free Download. You can read online Nanotechnology And Drug Delivery Volume One and write the review.

Pharmacotherapy is often limited by the inefficient activity and severe toxicity of drug molecules. Nanotechnology offers a revolutionary and definitive approach for the efficient delivery of drug molecules to non-healthy tissues and cells. This first volume of a series of two volumes analyzes the basics in the development of drug-loaded nanoplatfo
The reader will be introduced to various aspects of the fundamentals of nanotechnology based drug delivery systems and the application of these systems for the delivery of small molecules, proteins, peptides, oligonucleotides and genes. How these systems overcome challenges offered by biological barriers to drug absorption and drug targeting will also be described.
The recent introduction of nanomedicines in the drug therapy arena is revolutionizing the management of severe diseases. The key advance in the field is the optimization of the biological fate of drug molecules, thus improving the therapeutic effect while keeping to a very minimum the associated toxicity. Volume one of this book series, Nanoplatfor
Nanotechnology-based Targeted Drug Delivery Systems for Lung Cancer is an indispensable resource that will help pharmaceutical scientists and clinical researchers design and develop novel drug delivery systems and devices for the treatment of lung cancer. As recent breakthroughs in nanomedicine are now making it possible to deliver drugs, genes and therapeutic agents to localized areas of disease to maximize clinical benefit, while also limiting unwanted side effects, this book explores promising approaches for the diagnosis and treatment of lung cancer using cutting-edge nanomedical technologies. Topics discussed include polymeric nanoparticles, solid lipid nanoparticles, liposomes, dendrimers, micelles and nanoemulsions. - Provides an overview of an array of nanotechnology-based drug delivery systems - Examines the design, synthesis and application of different nanocarriers in drug and gene delivery - Provides an in-depth understanding of the design of targeted nanotherapeutics and technologies and its implication in various site-specific cancers
Nanotechnology for Oral Drug Delivery: From Concept to Applications discusses the current challenges of oral drug delivery, broadly revising the different physicochemical barriers faced by nanotechnolgy-based oral drug delivery systems, and highlighting the challenges of improving intestinal permeability and drug absorption. Oral delivery is the most widely used form of drug administration due to ease of ingestion, cost effectiveness, and versatility, by allowing for the accommodation of different types of drugs, having the highest patient compliance. In this book, a comprehensive overview of the most promising and up-to-date engineered and surface functionalized drug carrier systems, as well as opportunities for the development of novel and robust delivery platforms for oral drug administration are discussed. The relevance of controlling the physicochemical properties of the developed particle formulations, from size and shape to drug release profile are broadly reviewed. Advances in both in vitro and in vivo scenarios are discussed, focusing on the possibilities to study the biological-material interface. The industrial perspective on the production of nanotechnology-based oral drug delivery systems is also covered. Nanotechnology for Oral Drug Delivery: From Concept to Applications is essential reading for researchers, professors, advanced students and industry professionals working in the development, manufacturing and/or commercialization of nanotechnology-based systems for oral drug delivery, targeted drug delivery, controlled drug release, materials science and biomaterials, in vitro and in vivo testing of potential oral drug delivery technologies. Highlights the relevance of oral drug delivery in the clinical setting Covers the most recent advances in the field of nanotechnology for oral drug delivery Provides the scientific community with data that can facilitate and guide their research
Pharmacotherapy is often limited by the inefficient activity and severe toxicity of drug molecules. Nanotechnology offers a revolutionary and definitive approach for the efficient delivery of drug molecules to non-healthy tissues and cells. This first volume of a series of two volumes analyzes the basics in the development of drug-loaded nanoplatforms, the so-called nanomedicines. Special attention is given to physicochemical engineering, pharmacokinetics, biocompatibility and biodegradability, representative nanoplatforms (based on lipids, polymers, cyclodextrins, metals, carbon, silica, iron oxides, etc.), and advanced nano-engineering strategies for passive, ligand-mediated, and/or stimuli-sensitive drug delivery and release.
Nanomaterials for Drug Delivery and Therapy presents recent advances in the field of nanobiomaterials and their important applications in drug delivery, therapy and engineering. The book offers pharmaceutical perspectives, exploring the development of nanobiomaterials and their interaction with the human body. Chapters show how nanomaterials are used in treatments, including neurology, dentistry and cancer therapy. Authored by a range of contributors from global institutions, this book offers a broad, international perspective on how nanotechnology-based advances are leading to novel drug delivery and treatment solutions. It is a valuable research resource that will help both practicing medics and researchers in pharmaceutical science and nanomedicine learn more on how nanotechnology is improving treatments. - Assesses the opportunities and challenges of nanotechnology-based drug delivery systems - Explores how nanotechnology is being used to create more efficient drug delivery systems - Discusses which nanomaterials make the best drug carriers
Presents nanobiotechnology in drug delivery and disease management Featuring contributions from noted experts in the field, this book highlights recent advances in the nano-based drug delivery systems. It also covers the diagnosis and role of various nanomaterials in the management of infectious diseases and non-infectious disorders, such as cancers and other malignancies and their role in future medicine. Nanobiotechnology in Diagnosis, Drug Delivery and Treatment starts by introducing how nanotechnology has revolutionized drug delivery, diagnosis, and treatments of diseases. It then focuses on the role of various nanocomposites in diagnosis, drug delivery, and treatment of diseases like cancer, Alzheimer's disease, diabetes, and many others. Next, it discusses the application of a variety of nanomaterials in the diagnosis and management of gastrointestinal tract disorders. The book explains the concept of nanotheranostics in detail and its role in effective monitoring of drug response, targeted drug delivery, enhanced drug accumulation in the target tissues, sustained as well as triggered release of drugs, and reduction in adverse effects. Other chapters cover aptamer-incorporated nanoparticle systems; magnetic nanoparticles; theranostics and vaccines; toxicological concerns of nanomaterials used in nanomedicine; and more. Provides a concise overview of state-of-the-art nanomaterials and their application like drug delivery in infectious diseases and non-infectious disorders Highlights recent advances in the nano-based drug delivery systems and role of various nanomaterials Introduces nano-based sensors which detect various pathogens Covers the use of nanodevices in diagnostics and theranostics Nanobiotechnology in Diagnosis, Drug Delivery and Treatment is an ideal book for researchers and scientists working in various disciplines such as microbiology, biotechnology, nanotechnology, pharmaceutical biotechnology, pharmacology, pharmaceutics, and nanomedicine.
Nano- and Microscale Drug Delivery Systems: Design and Fabrication presents the developments that have taken place in recent years in the field of micro- and nanoscale drug delivery systems. Particular attention is assigned to the fabrication and design of drug delivery systems in order to i) reduce the side effects of therapeutic agents, ii) increase their pharmacological effect, and iii) improve aqueous solubility and chemical stability of different therapeutic agents. This book is designed to offer a cogent, concise overview of current scholarship in this important area of research through its focus on the characterization and fabrication of a variety of nanomaterials for drug delivery applications. It is an invaluable reference source for both biomaterials scientists and biomedical engineers who want to learn more about how nanomaterials are engineered and used in the design of drug delivery nanosystems. - Shows how micro- and nanomaterials can be engineered to create more effective drug delivery systems - Summarizes current nanotechnology research in the field of drug delivery systems - Explores the pros and cons of using particular nanomaterials as therapeutic agents - Serves as a valuable reference for both biomaterials scientists and biomedical engineers who want to learn more about how nanomaterials are engineered and used in the design of drug delivery nanosystems
Nano-carriers for Drug Delivery: Nanoscience and Nanotechnology in Drug Delivery presents recent discoveries in research on the pharmaceutical applications of the various types of nanosystem-based drug delivery systems. As many nanosystems have reached the market over the past decade, this book proves their benefits to patients. It explores these new carriers and the advances in drug delivery they have facilitated. Reflecting the interdisciplinary nature of the subject matter, the book includes experts from different fields, and with various backgrounds and expertise. It will appeal to researchers and students from different disciplines, such as materials science, technology and various biomedical fields. Coverage includes industrial applications that bridge the gap between lab-based research and practical industrial use. The resulting work is a reference and practical source of guidance for researchers, students and scientists working in the fields of nanotechnology, materials science and technology and biomedical science.