Download Free Nanotechnologies In Food And Agriculture Book in PDF and EPUB Free Download. You can read online Nanotechnologies In Food And Agriculture and write the review.

This book presents a comprehensive overview of new and emerging nanotechnologies. It includes aspects of nanoparticle monitoring, toxicity, and public perception, and covers applications that address both crop growing and treatment of agricultural wastewater. Topics include nanoagrochemicals (nanofertilizers, -pesticides, -herbicides), nanobiosensors, and nanotechnologies for food processing, packaging, and storage, crop improvement and plant disease control. The group of expert authors is led by an experienced team of editors.
Nanotechnology is a fast-evolving discipline that already produces outstanding basic knowledge and industrial applications for the benefit of society. Whereas the first applications of nanotechnology have been developed mainly in material sciences, applications in the agriculture and food sectors are still emerging. Due to a rapid population growth there is a need to produce food and beverages in a more efficient, safe and sustainable way. Here, nanotechnology is a promising way to improve crop production, water quality, nutrition, packaging, and food security. There are actually few comprehensive reviews and clear textbooks on nanotechnology in agriculture, water, and food. In this book there are 10 chapters describing the synthesis and application of nanomaterials for health, food, and agriculture are presented. Nanomaterials with unique properties will dramatically improve agriculture and food production. Applications will include nanofertilisers to enhance plant growth and nanosensors to detect food contamination. An overall view of nanotechnology applications in agriculture, food, water, and environment are described in the first two chapters by Dasgupta et al. and Singh. Health and environmental applications of nanotechnology are presented in chapters 3-5. Shukla and Iravani review green methods to synthesize metal nanoparticles, and give applications to water purification, in chapter 3. The removal of up to 95% of contaminants by nanoparticles, nanotubes and nanostructured membranes is described by Naghdi et al. in chapter 4. Yoti et al. then review nanosensors for the detection of pathogenic bacteria in chapter 5. Those nanosensors can be used as biodiagnostics to control food and water quality. Food applications of nanoscience are presented in chapters 6 and 7 by Kuswandi and Sarkhar et al. Kuswandi explain in chapter 6 that nanomaterials can improve packaging quality and that nanosensors can detect freshness and contanimants. The use of nanoparticles to protect ingredients such as vitamins, flavours, and antimicrobials is reviewed by Sarkhar et al. in chapter 7.
Nanotechnology progresses its concerts and suitability by improving its effectiveness, security and also reducing the impact and risk. Various chapters in this book are written by eminent scientists and prominent researchers in the field of nanotechnology across the world. This book is focused to put emerging techniques forward using nanoparticles for safe and nutritional food production, protecting crops from pests, increasing nutritional value and providing solutions for various environmental issues. The outcome of this book creates a path for wide usage of nanoparticles in food, agriculture and the environment fields. This book has clear and simple illustrations, tables and case studies to understand the content even by non-experts. This book especially deals with the nanotechnology for controlling plant pathogens, food packaging and preservation, agricultural productivity, waste water treatment and bioenergy production. Hence, this book can be adopted and used by many researchers and academicians in the fields of food, agriculture, environment and nanotechnology for catering the needs of sustainable future. The salient features of this book are • Describes nanotechnology as an interdisciplinary and emerging field in life sciences• Useful for researchers in the cutting edge life science related fields of nanoscience, nanobiology and nanotechnology• Deal with various problems in food, agriculture and environmental sector for sustainable solutions through the application of nanotechnology• Supported with illustrations in color, tables and case studies (wherever applicable), and • Contributed and well written by nanotechnology experts from across various disciplines
A comprehensive overview of the current state of this highly relevant topic. An interdisciplinary team of researchers reports on the opportunities and challenges of nanotechnology in the agriculture and food sector, highlighting the scientific, technical, regulatory, safety, and societal impacts. They also discuss the perspectives for the future, and provide insights into ways of assuring safety so as to obtain confidence for the consumer, as well as an overview of the innovations and applications. Essential reading for materials and agricultural scientists, food chemists and technologists, as well as toxicologists and ecotoxicologists.
Providing an overview of nanotechnology in the context of agriculture and food science, this monograph covers topics such as nano-applications in teh agri-food sector, as well as the social and ethical implications. Following a review of the basics, the book goes on to take an in-depth look at processing and engineering, encapsulation and delivery, packaging, crop protection and disease. It highlights the technical, regulatory, and safety aspects of nanotechnology in food science and agriculture, while also considering the environmental impact. A valuable and accessible guide for professionals, novices, and students alike.
" ... FAO headquarters on 1-5 June 2009 ..."--P. xvii.
This book is the second volume on this topic within the series. With unique properties, nanomaterials are rapidly finding novel applications in many fields such as food, medicine, agriculture and pollution. Such applications include to treat cancer, nanosensors to detect food contamination, nanomaterials for food packaging, nanoencapsulation to preserve nutraceuticals, and nanofertilisers for advanced agriculture. After an introductory chapter on property rights of nanomaterials, readers will discover the applications of nanotechnology in food, health, environment, ecotoxicology and agriculture.
In this book we present ten chapters describing the synthesis and application of nanomaterials for health, food, agriculture and bioremediation. Nanomaterials, with unique properties are now being used to improve food and agricultural production. Research on nanomaterials is indeed revealing new applications that were once thought to be imaginary. Specifically, applications lead to higher crop productivity with nanofertilisers, better packaging, longer food shelf life and better sensing of aromas and contaminants. these applications are needed in particular in poor countries where food is scarce and the water quality bad. Nanotechnology also addresses the age old issue of water polluted by industrial, urban and agricultural pollutants. For instance, research produces nanomaterials that clean water more efficiently than classical methods, thus yielding water for drinking and irrigation. However, some nanomaterials have been found to be toxic. Therefore, nanomaterials should be engineered to be safe for the environment.
This book is the third volume on Nanoscience in Food and Agriculture, published in the Sustainable Agriculture Reviews series. In this book we present ten chapters describing the synthesis and application of nanomaterials for health, food, agriculture and bioremediation.Nanomaterials with unique properties are now being used to improve food and agricultural production. Research on nanomaterials is indeed revealing new applications that were once thought to be imaginary. Specifically, applications lead to higher crop productivity with nanofertilisers, better packaging, longer food shelf life and better sensing of aromas and contaminants. These applications are needed in particular in poor countries where food is scarce and the water quality bad. Nanotechnology also addresses the age old issue of water polluted by industrial, urban and agricultural pollutants. For instance, research produces nanomaterials that clean water more efficiently than classical methods, thus yielding water for drinking and irrigation. However, some nano materials have been found to be toxic. Therefore, nanomaterials should be engineered to be safe for the environment.
The uses of nanotechnologies continue to rise exponentially. Due to their multifaceted nature, nanomaterials have a vast amount of potential uses in various scientific professions. Professionals in sectors including agriculture, nutrition, and healthcare are discovering the numerous benefits that nanomaterials carry when applied to traditional practices. In order to understand the dynamic properties of nanomaterials and how to utilize them in specific fields, significant research is required. Applications of Nanomaterials in Agriculture, Food Science, and Medicine is an essential reference source that discusses the emerging development of nanotechnology in various sectors of the scientific community as well as the current benefits and future uses. Industries that the book covers include energy storage and renewable energy, environmental science and wastewater treatment, food and agriculture, and medicine and bioinformatics. This book is ideally designed for researchers, engineers, practitioners, industrialists, educators, strategists, policymakers, scientists, and students seeking coverage on the strategic role of nanomaterials in these imperative fields.