Download Free Nanostructures In Electronics And Photonics Book in PDF and EPUB Free Download. You can read online Nanostructures In Electronics And Photonics and write the review.

This book provides a broad overview of nanotechnology as applied to contemporary electronics and photonics. The areas of application described are typical of what originally set off the nanotechnology revolution. An account of original research contributions from researchers all over the world, the book is extremely valuable for gaining an understa
The intersection of nanostructured materials with photonics and electronics shows great potential for clinical diagnostics, sensors, ultrafast telecommunication devices, and a new generation of compact and fast computers. Nanophotonics draws upon cross-disciplinary expertise from physics, materials science, chemistry, electrical engineering, biology, and medicine to create novel technologies to meet a variety of challenges. This is the first book to focus on novel materials and techniques relevant to the burgeoning area of nanoscale photonics and optoelectronics, including novel-hybrid materials with multifunctional capabilities and recent advancements in the understanding of optical interactions in nanoscale materials and quantum-confined objects. Leading experts provide a fundamental understanding of photonics and the related science and technology of plasmonics, polaritons, quantum dots for nanophotonics, nanoscale field emitters, near-field optics, nanophotonic architecture, and nanobiophotonic materials.
With the increasing demand for smaller, faster, and more highly integrated optical and electronic devices, as well as extremely sensitive detectors for biomedical and environmental applications, a field called nano-optics or nano-photonics/electronics is emerging – studying the many promising optical properties of nanostructures. Like nanotechnology itself, it is a rapidly evolving and changing field – but because of strong research activity in optical communication and related devices, combined with the intensive work on nanotechnology, nano-optics is shaping up fast to be a field with a promising future. This book serves as a one-stop review of modern nano-optical/photonic and nano-electronic techniques, applications, and developments. - Provides overview of the field of Nano-optics/photonics and electronics, detailing practical examples of photonic technology in a wide range of applications - Discusses photonic systems and devices with mathematical rigor precise enough for design purposes - A one-stop review of modern nano-optical/photonic and nano-electronic techniques, applications, and developments
This book discusses electrons and photons in and through nanostructures by the first-principles quantum mechanical theories and fundamental concepts (a unified coverage of nanostructured electronic and optical components) behind nanoelectronics and optoelectronics, the material basis, physical phenomena, device physics, as well as designs and applications. The combination of viewpoints presented in the book can help foster further research and cross-disciplinary interaction needed to surmount the barriers facing future generations of technology design.
Annotation Tiny structures measurable on the nanometer scale (one-billionth of a meter) are known as nanostructures, and nanotechnology is the emerging application of these nanostructures into useful nanoscale devices. As we enter the 21st century, more and more professional are using nanotechnology to create semiconductors for a variety of applications, including communications, information technology, medical, and transportation devices. Written by today's best researchers of semiconductor nanostructures, this cutting-edge resource provides a snapshot of this exciting and fast-changing field. The book covers the latest advances in nanotechnology and discusses the applications of nanostructures to optoelectronics, photonics, and electronics.
Tremendous innovations in electronics and photonics over the past few decades have resulted in the downsizing of transistors in integrated circuits, which are now approaching atomic scales. This will soon result in the creation of a growing knowledge gap between the underlying technology and state-of-the-art electronic device modeling and simulations. This book bridges the gap by presenting cutting-edge research in the computational analysis and mathematical modeling of graphene nanostructures as well as the recent progress on graphene transistors for nanoscale circuits. It inspires and educates fellow circuit designers and students in the field of emerging low-power and high-performance circuit designs based on graphene. While most of the books focus on the synthesis, fabrication, and characterization of graphene, this book shines a light on graphene models and their circuit simulations and applications in photonics. It will serve as a textbook for graduate-level courses in nanoscale electronics and photonics design and appeal to anyone involved in electrical engineering, applied physics, materials science, or nanotechnology research.
Recent developments in the technology of silicon nanocrystals and silicon nanostructures, where quantum-size effects are important, are systematically described including examples of device applications. Due to the strong quantum confinement effect, the material properties are freed from the usual indirect- or direct-bandgap regime, and the optical, electrical, thermal, and chemical properties of these nanocrystalline and nanostructured semiconductors are drastically changed from those of bulk silicon. In addition to efficient visible luminescence, various other useful material functions are induced in nanocrystalline silicon and periodic silicon nanostructures. Some novel devices and applications, in fields such as photonics (electroluminescence diode, microcavity, and waveguide), electronics (single-electron device, spin transistor, nonvolatile memory, and ballistic electron emitter), acoustics, and biology, have been developed by the use of these quantum-induced functions in ways different from the conventional scaling principle for ULSI.
This unique edited compendium consists of peer-reviewed articles focusing on 2D materials-based nanoelectronics to nanophotonic devices for biosensors and bio-nano-systems.Wide-ranging topics span from novel systems for implementing data with security tokens, single chemical sensor for multi-analyte mixture detection, additively manufactured RF devices for communication, packaging, remote sensing, to energy harvesting applications.Quantum dot-based devices featuring optical modulators and mid-infrared photodetectors in the form of Ferroelectric and quantum dot non-volatile memories, 3D-confined quantum dot channel (QDC) and spatial wavefunction switched (SWS) FETs for high-speed multi-bit logic and novel system applications are also included.Contributed by eminent researchers, recent coverage of materials science for high-speed electronics, nanoelectronics based on ferroelectric and van der Waals materials, material synthesis, modeling of dislocations behavior in various heterostructures, Ultrahigh-Q on-chip SiGe microresonators for quantum transduction in new trend in computing are also prominently discussed.
A rigorous guide providing a unified, multidisciplinary treatment of the fundamentals of optical and optoelectronic nanostructures.
Provides first-hand insights into advanced fabrication techniques for solution processable organic electronics materials and devices The field of printable organic electronics has emerged as a technology which plays a major role in materials science research and development. Printable organic electronics soon compete with, and for specific applications can even outpace, conventional semiconductor devices in terms of performance, cost, and versatility. Printing techniques allow for large-scale fabrication of organic electronic components and functional devices for use as wearable electronics, health-care sensors, Internet of Things, monitoring of environment pollution and many others, yet-to-be-conceived applications. The first part of Solution-Processable Components for Organic Electronic Devices covers the synthesis of: soluble conjugated polymers; solution-processable nanoparticles of inorganic semiconductors; high-k nanoparticles by means of controlled radical polymerization; advanced blending techniques yielding novel materials with extraordinary properties. The book also discusses photogeneration of charge carriers in nanostructured bulk heterojunctions and charge carrier transport in multicomponent materials such as composites and nanocomposites as well as photovoltaic devices modelling. The second part of the book is devoted to organic electronic devices, such as field effect transistors, light emitting diodes, photovoltaics, photodiodes and electronic memory devices which can be produced by solution-based methods, including printing and roll-to-roll manufacturing. The book provides in-depth knowledge for experienced researchers and for those entering the field. It comprises 12 chapters focused on: ? novel organic electronics components synthesis and solution-based processing techniques ? advanced analysis of mechanisms governing charge carrier generation and transport in organic semiconductors and devices ? fabrication techniques and characterization methods of organic electronic devices Providing coverage of the state of the art of organic electronics, Solution-Processable Components for Organic Electronic Devices is an excellent book for materials scientists, applied physicists, engineering scientists, and those working in the electronics industry.