Download Free Nanostructured Electrochromic Materials For Smart Switchable Windows Book in PDF and EPUB Free Download. You can read online Nanostructured Electrochromic Materials For Smart Switchable Windows and write the review.

This book focuses on next-generation smart windows which can change their optical-physical properties by reflecting and/or transmitting incoming light radiation to attain comfortable indoor temperatures throughout the year. Offers in-depth discussion of a range of materials and devices related to different technologies used in manufacturing smart windows Discusses basic principles, materials synthesis and thin film fabrication, and optical and electrochemical characterization techniques
POLYMERS AND ADDITVES IN EXTREME ENVIRONMENTS Uniquely catalogs polymers and additives for uses in extreme applications such as in high or low pressure, high or low temperature, deep water and other special applications. The book includes chapters on aqueous environments including polymeric membranes for water purification and wastewater treatment; extreme pressure environments such as oils and lubricants for combustion engines as well as materials used for deep drilling such as surfactants, scale inhibitors, foaming agents, defoamers, propellants, fracturing fluids; extreme temperatures is subdivided in high and low temperature applications including gasketing materials, fuel tank sealants, expulsion bladders, fuel cell materials, and on the other hand, cold weather articles and thermoregulatory textiles; electrical applications include solar cell devices, triboelectric generators, fuel cell applications, electrochromic materials and batteries; medical applications include polymers for contact lenses, materials for tissue engineering, sophisticated drug delivery systems; aerospace applications include outer space applications such as low temperature and pressure, also cosmic rays, outgassing, and atomic erosion, as well as materials for electrostactic dissipative coatings and space suits; a final chapter detailing materials that are used in other extreme environments, such as adhesives, and polymeric concrete materials. Audience Materials and polymer scientists working in manufacturing and plastics, civil and mechanical engineers in various industries such as automotive, aircraft, space, marine and shipping, electronics, construction, electrical, etc. will find this book essential. The book will also serve the needs of engineers and specialists who have only a passing contact with polymers and additives in industrial setting need to know more.
Handbook of Energy Efficiency in Buildings: A Life Cycle Approach offers a comprehensive and in-depth coverage of the subject with a further focus on the Life Cycle. The editors, renowned academics, invited a diverse group of researchers to develop original chapters for the book and managed to well integrate all contributions in a consistent volume. Sections cover the role of the building sector on energy consumption and greenhouse gas emissions, international technical standards, laws and regulations, building energy efficiency and zero energy consumption buildings, the life cycle assessment of buildings, from construction to decommissioning, and other timely topics. The multidisciplinary approach to the subject makes it valuable for researchers and industry based Civil, Construction, and Architectural Engineers. Researchers in related fields as built environment, energy and sustainability at an urban scale will also benefit from the books integrated perspective. - Presents a complete and thorough coverage of energy efficiency in buildings - Provides an integrated approach to all the different elements that impact energy efficiency - Contains coverage of worldwide regulation
Edited by well-known pioneers in the field, this handbook and ready reference provides a comprehensive overview of transparent conductive materials with a strong application focus. Following an introduction to the materials and recent developments, subsequent chapters discuss the synthesis and characterization as well as the deposition techniques that are commonly used for energy harvesting and light emitting applications. Finally, the book concludes with a look at future technological advances. All-encompassing and up-to-date, this interdisciplinary text runs the gamut from chemistry and materials science to engineering, from academia to industry, and from fundamental challenges to readily available applications.
Electrochemistry is the branch of chemistry that deals with the chemical action of electricity and the production of electricity by chemical reactions. In a world short of energy sources yet long on energy use, electrochemistry is a critical component of the mix necessary to keep the world economies growing. Electrochemistry is involved with such important applications as batteries, fuel cells, corrosion studies, hydrogen energy conversion, and bioelectricity. Research on electrolytes, cells, and electrodes is within the scope of this old but extremely dynamic field. This book details advances in metal electrodeposition.
Electrochromic materials can change their properties under the influence of an electrical voltage or current. Different classes of materials show this behavior such as transition metal oxides, conjugated polymers, metal-coordinated complexes and organic molecules. As the color change is persistent, the electric field needs only to be applied to initiate the switching, allowing for applications such as low-energy consumption displays, light-adapting mirrors in the automobile industry and smart windows for which the amount of transmitted light and heat can be controlled. The first part of this book describes the different classes and processing techniques of electrochromic materials. The second part highlights nanostructured electrochromic materials and device fabrication, and the third part focuses on the applications such as smart windows, adaptive camouflage, biomimicry, wearable displays and fashion. The last part rounds off the book by device case studies and environmental impact issues.
This book, based on the lectures and contributions of the NATO ASI on "Functional Properties of Nanostructured Materials", gives a broad overview on its topic, as it combines basic theoretical articles, papers dealing with experimental techniques, and contributions on advanced and up-to-date applications in fields such as microelectronics, optoelectronics, electrochemistry, sensorics, and biotechnology.
Dieses klar strukturierte Fachbuch legt den Schwerpunkt auf praktische Anwendungen von Nanokompositen und Nanotechnologien im Rahmen einer nachhaltigen Entwicklung. Es zeigt, wie Nanokomposite zur Lösung von Energie- und Umweltproblemen beitragen können, bietet zusätzlich einen breiten Überblick über Anwendungen im Energiebereich und behandelt eine einzigartige Auswahl an Umweltthemen. Der erste Teil beschäftigt sich mit Anwendungen wie Lithium-Ionen-Batterien, Solarzellen, Katalyse, Gewinnung von Wärme und Energie aus Abfällen mithilfe der Thermoelektrizität und Wasserspaltung. Der zweite Teil beleuchtet in einzigartiger Weise ökologische Themen, darunter Atommüllmanagement sowie die Abscheidung und Speicherung von Kohlendioxid. Dieses Fachbuch vermittelt auf erfolgreiche Weise Grundlagenwissen für Einsteiger als auch die neuesten Erkenntnisse für erfahrene Wissenschaftler, Ingenieure und Forscher aus der Industrie.
The first book to paint a complete picture of the challenges of processing functional nanomaterials for printed electronics devices, and additive manufacturing fabrication processes. Following an introduction to printed electronics, the book focuses on various functional nanomaterials available, including conducting, semi-conducting, dielectric, polymeric, ceramic and tailored nanomaterials. Subsequent sections cover the preparation and characterization of such materials along with their formulation and preparation as inkjet inks, as well as a selection of applications. These include printed interconnects, passive and active modules, as well as such high-tech devices as solar cells, transparent electrodes, displays, touch screens, sensors, RFID tags and 3D objects. The book concludes with a look at the future for printed nanomaterials. For all those working in the field of printed electronics, from entrants to specialized researchers, in a number of disciplines ranging from chemistry and materials science to engineering and manufacturing, in both academia and industry.
Electrochromic materials, both organic and inorganic, have widespread applications in light-attenuation, displays and analysis. Written in an accessible manner, this book provides a comprehensive treatment of all types of electrochromic systems and their many applications. Coverage develops from electrochromic scope and history to new searching presentations of optical quantification and theoretical mechanistic models. Non-electrode electrochromism and photo-electrochromism are summarised, with updated comprehensive reviews of electrochromic oxides (tungsten-trioxide particularly), metal co-ordination complexes and metal-cyanometallates, viologens and other organics; and more recent exotics such as fullerenes, hydrides, and conjugated electroactive polymers are also covered. The book concludes by examining device construction and durability. With an extensive bibliography, recent advances in the field, modern applications and a step-by-step development from simple examples to sophisticated theories, this book is ideal for researchers in materials science, polymer science, electrical engineering, physics, chemistry, bioscience and (applied) optoelectronics.