Download Free Nanostructure Engineering Using Electron Beam Lithography Book in PDF and EPUB Free Download. You can read online Nanostructure Engineering Using Electron Beam Lithography and write the review.

This Ph. D. thesis addresses nanostructure fabrication techniques based on electron beam lithography and their application to: the creation of ultra-fast metal-semiconductor-metal photodetectors and quantum effect transistors, the investigation of light emission from silicon, and the enhancement of resolution in magnetic force microscopy. Specifically, this thesis covers the following topics. (1) The implementation and characterization of an ultra-high resolution electron beam lithography (EBL) system created by modifying a scanning electron microscope. (2) The exploration of minimum achievable feature sizes using ultra-high resolution EBL and a lift-off process with polymethyl-methacrylate resists. 10 nm features, which are among the smallest ever achieved using EBL, have been obtained using a double shadow evaporation technique, a ultra-high resolution EBL technique, and a technique utilizing EBL, reactive ion etching, and subsequent wet etching. (3) The application of ultra-high resolution EBL technology to the fabrication of ultra-fast metal-semiconductor-metal (MSM) photodetectors. The fastest response time reported to date has been achieved in this project. (4) The fabrication and characterization of modulation doped field effect transistors. Quantum effects have been observed in a point contact device. (5) The fabrication of sub-50 nm Si structures using EBL, reactive ion etching (RIE) and subsequent wet etching for the study of photoluminescence (PL) from Si. PL has been observed from an array of 20 nm diameter pillars. And finally, (6) the application of high resolution EBL to the study of magnetic materials. Single domain magnetic particles and novel MFM tips have been fabricated.
Many of the devices and systems used in modern industry are becoming progressively smaller and have reached the nanoscale domain. Nanofabrication aims at building nanoscale structures, which can act as components, devices, or systems, in large quantities at potentially low cost. Nanofabrication is vital to all nanotechnology fields, especially for the realization of nanotechnology that involves the traditional areas across engineering and science. This is the first book solely dedicated to the manufacturing technology in nanoscale structures, devices, and systems and is designed to satisfy the growing demands of researchers, professionals, and graduate students. Both conventional and non-conventional fabrication technologies are introduced with emphasis on multidisciplinary principles, methodologies, and practical applications. While conventional technologies consider the emerging techniques developed for next generation lithography, non-conventional techniques include scanning probe microscopy lithography, self-assembly, and imprint lithography, as well as techniques specifically developed for making carbon tubes and molecular circuits and devices. Sample Chapter(s). Chapter 1: Atom, Molecule, and Nanocluster Manipulations for Nanostructure Fabrication Using Scanning Probe Microscopy (3,320 KB). Contents: Atomic Force Microscope Lithography (N Kawasegi et al.); Nanowire Assembly and Integration (Z Gu & D H Gracias); Extreme Ultraviolet Lithography (H Kinoshita); Electron Projection Lithography (T Miura et al.); Electron Beam Direct Writing (K Yamazaki); Electron Beam Induced Deposition (K Mitsuishi); Focused Ion Beams and Interaction with Solids (T Ishitani et al.); Nanofabrication of Nanoelectromechanical Systems (NEMS): Emerging Techniques (K L Ekinci & J Brugger); and other papers. Readership: Researchers, professionals, and graduate students in the fields of nanoengineering and nanoscience.
This book provides the reader with the most up-to-date information and development in the Nanofabrication area. It presents a one-stop description at the introduction level on most of the technologies that have been developed which are capable of making structures below 100nm. Principles of each technology are introduced and illustrated with minimum mathematics involved. The book serves as a practical guide and first hand reference for those working in nanostructure fabrication.
Intended to update scientists and engineers on the current state of the art in a variety of key techniques used extensively in the fabrication of structures at the nanoscale. The present work covers the essential technologies for creating sub 25 nm features lithographically, depositing layers with nanometer control, and etching patterns and structures at the nanoscale. A distinguishing feature of this book is a focus not on extension of microelectronics fabrication, but rather on techniques applicable for building NEMS, biosensors, nanomaterials, photonic crystals, and other novel devices and structures that will revolutionize society in the coming years.
Electron beam lithography, benefiting from the electron's shorter wavelength, is believed to be the next generation of lithography that will be used for manufacturing of ultra-large scale integrated circuits. In this dissertation, we investigated methodologies to enhance the resolution of electron beam lithography for nanostructure fabrication. The research was conducted at a writing voltage of 15 kV in order to demonstrate technologies that can be readily adapted to the future generations of commercialized electron beam lithography tools. It is expected that these new instrument will use low writing voltages in order to minimize the substrate damage and to reduce the instrument cost. Based on the studies presented in this dissertation, we demonstrate sub-10 nm linewidth isolated patterns and sub-10 nm linewidth dense patterns writing at a voltage of 15 kV. In addition, we successfully demonstrated a nano-pattern transfer process by using electron beam direct writing on a "modified" resist (in our case, a mixture of nanoparticles and PMMA photo resist). The successful demonstration of the electron beam direct writing on a modified resist can potentially open a new window of resist modification engineering for lithographic applications. The details of the development of novel methodologies will be presented in this thesis. We also demonstrate a 5 nm gold nano-gap, which can be used to study the electronic properties of nanoparticles trapped in the gap. Metal molds with minimum linewidths of 10 nm can be used for nanoimprint lithography was also demonstrated. In addition, silicon nanowires with a minimum linewidth of 10 nm that can be used for the fabrication of single electron transistor working at a high temperature were demonstrated. Finally, a 5 nm gold nanoparticle confined in a 30 nm resist island, which can be used for the single/multiple dot spectroscopy study was fabricated.
Nanofabrication Using Focused Ion and Electron Beams presents fundamentals of the interaction of focused ion and electron beams (FIB/FEB) with surfaces, as well as numerous applications of these techniques for nanofabrication involving different materials and devices. The book begins by describing the historical evolution of FIB and FEB systems, applied first for micro- and more recently for nanofabrication and prototyping, practical solutions available in the market for different applications, and current trends in development of tools and their integration in a fast growing field of nanofabrication and nanocharacterization. Limitations of the FIB/FEB techniques, especially important when nanoscale resolution is considered, as well as possible ways to overcome the experimental difficulties in creating new nanodevices and improving resolution of processing, are outlined. Chapters include tutorials describing fundamental aspects of the interaction of beams (FIB/FEB) with surfaces, nanostructures and adsorbed molecules; electron and ion beam chemistries; basic theory, design and configuration of equipment; simulations of processes; basic solutions for nanoprototyping. Emerging technologies as processing by cluster beams are also discussed. In addition, the book considers numerous applications of these techniques (milling, etching, deposition) for nanolithography, nanofabrication and characterization, involving different nanostructured materials and devices. Its main focus is on practical details of using focused ion and electron beams with gas assistance (deposition and etching) and without gas assistance (milling/cutting) for fabrication of devices from the fields of nanoelectronics, nanophotonics, nanomagnetics, functionalized scanning probe tips, nanosensors and other types of NEMS (nanoelectromechanical systems). Special attention is given to strategies designed to overcome limitations of the techniques (e.g., due to damaging produced by energetic ions interacting with matter), particularly those involving multi-step processes and multi-layer materials. Through its thorough demonstration of fundamental concepts and its presentation of a wide range of technologies developed for specific applications, this volume is ideal for researches from many different disciplines, as well as engineers and professors in nanotechnology and nanoscience.
This book provides a broad overview of nanotechnology as applied to contemporary electronics and photonics. The areas of application described are typical of what originally set off the nanotechnology revolution. An account of original research contributions from researchers all over the world, the book is extremely valuable for gaining an understa
In this thesis, we investigated three-dimensional (3D) nanofabrication using electron-beam lithography (EBL), block copolymer (BCP) self-assembly, and capillary force-induced self-assembly. We first developed new processes for fabricating 3D nanostructures using a hydrogen silsesquioxane (HSQ) and poly(methylmeth-acrylate) (PMMA) bilayer resist stack. We demonstrated self-aligned mushroom-shaped posts and freestanding supported structures. Next, we used the 3D nanostructures as topographical templates guiding the self-assembly of polystyrene-b-polydimethylsiloxane (PS-b-PDMS) block copolymer thin films. We observed parallel cylinders, mesh-shaped structures, and bar-shaped structures in PDMS. Finally, we studied capillary force-induced self-assembly of linear nanostructures using a spin drying process. We developed a computation schema based on the pairwise collapse of nanostructures. We achieved propagation of information and built a proof of concept logic gate.
Nanoimprint Lithography: An enabling process for nanofabrication presents a comprehensive description of nanotechnology that is one of the most promising low-cost, high-throughput technologies for manufacturing nanostructures, and an emerging lithography candidates for 22, 16 and 11 nm nodes. It provides the exciting, multidisciplinary field, offering a wide range of topics covering: principles, process, material and application. This book would be of specific interest for researchers and graduate students in the field of nanoscience, nanotechnology and nanofabrication, material, physical, chemical, electric engineering and biology. Dr. Weimin Zhou is an associate professor at Shanghai Nanotechnology Promotion Center, China.