Download Free Nanoscale Processing Book in PDF and EPUB Free Download. You can read online Nanoscale Processing and write the review.

Nanoscale Processing outlines recent advances in processing techniques for a range of nanomaterial types. New developments in the processing of nanostructured materials are being applied in diverse fields. This book offers in-depth information and analysis of a range of processing techniques for nanostructures, and also covers nanocharacterization aspects thoroughly. Topics covered include zero dimensional nanostructures, nanostructured biomaterials, carbon-based nanostructures, polymeric and liposomal nanostructures, and quantum dots. This book is an important resource for materials scientists and engineers looking to learn more about a variety of processing techniques for various nanomaterial classes, for use in both the industrial and biomedical sectors. - Explains major nanoscale processing techniques, outlining in which situations each should be used - Discuses a range of nanomaterial classes, including nanobiomaterials, polymeric nanomaterials, optical nanomaterials and magnetic nanomaterials - Explores the challenges of using certain processing techniques for certain classes of nanomaterial
Infochemistry: Information Processing at the Nanoscale, defines a new field of science, and describes the processes, systems and devices at the interface between chemistry and information sciences. The book is devoted to the application of molecular species and nanostructures to advanced information processing. It includes the design and synthesis of suitable materials and nanostructures, their characterization, and finally applications of molecular species and nanostructures for information storage and processing purposes. Divided into twelve chapters; the first three chapters serve as an introduction to the basic concepts of digital information processing, its development, limitations and finally introduces some alternative concepts for prospective technologies. Chapters four and five discuss traditional low-dimensional metals and semiconductors and carbon nanostructures respectively, while further chapters discuss Photoelectrochemical photocurrent switching and related phenomena and self-organization and self-assembly. Chapters eight, nine and ten discuss information processing at the molecular level, and eleven describes information processing in natural systems. The book concludes with a discussion of the future prospects for the field. Further topics: Traditional electronic device development is rapidly approaching a limit, so molecular scale information processing is critical in order to meet increasing demand for high computational power Characterizes chemical systems not according to their chemical nature, but according to their role as prospective information technology elements Covers the application of molecular species and nanostructures as molecular scale logic gates, switches, memories, and complex computing devices This book will be of particular interest to researchers in nanoelectronics, organic electronics, optoelectronics, chemistry and materials science.
Over the past few decades, the rapid development of ultrafast lasers, such as femtosecond lasers and picosecond lasers, has opened up new avenues for material processing due to their unique features such as ultrashort pulse width and extremely high peak intensity. These techniques have become a common tool for micro- and nanoprocessing of a variety
Micro and Nanoscale Laser Processing of Hard Brittle Materials examines general laser-material interactions within this type of material, focusing on the nanoprocessing technologies that these phenomena have given rise to. Sections cover laser machining, healing, recovery, sintering, surface modification, texturing and microstructuring. These technologies all benefit from the characteristics of laser processing, its highly localized heating ability, and its well-defined optical properties. The book also describes frontier applications of the developed technologies, thus further emphasizing the possibility of processing hard brittle materials into complex structures with functional surfaces at both the micro and nanoscale. Provides readers with a solid understanding of laser-material interactions Helps readers choose suitable laser parameters for processing hard brittle materials Demonstrates how micro and nanoscale laser processing can be used to machine brittle materials without fracture
Sustainable Nanoscale Engineering: From Materials Design to Chemical Processing presents the latest on the design of nanoscale materials and their applications in sustainable chemical production processes. The newest achievements of materials science, in particular nanomaterials, opened new opportunities for chemical engineers to design more efficient, safe, compact and environmentally benign processes. These materials include metal-organic frameworks, graphene, membranes, imprinted polymers, polymers of intrinsic microporosity, nanoparticles, and nanofilms, to name a few. Topics discussed include gas separation, CO2 sequestration, continuous processes, waste valorization, catalytic processes, bioengineering, pharmaceutical manufacturing, supercritical CO2 technology, sustainable energy, molecular imprinting, graphene, nature inspired chemical engineering, desalination, and more. - Describes new, efficient and environmentally accepted processes for nanomaterials design - Includes a large array of materials, such as metal-organic frameworks, graphene, imprinted polymers, and more - Explores the contribution of these materials in the development of sustainable chemical processes
With changing consumer preferences and the focus on developing resilient food systems, food processing is finding its place in key policies, government interventions, global trade, and the overall food and nutritional security. Given this, this new 3-volume collection offers a compilation of emerging and futuristic food processing technologies, presenting fundamental concepts of food technology, trending applications, and a range of interdisciplinary concepts that have found numerous interwoven applications in the food industry. Volume 3 is an exploration of the future of food processing, highlighting certain emerging and disruptive technologies and their gaining influence in the food sector. The first five chapters focus on computers and information technology-linked applications such as CFD modeling, robotics, automation, artificial intelligence, big data, the Internet of Things, cloud computing, and blockchain management for the food industry. The book then details selected interesting concepts that have made phenomenal advancements in recent years: approaches for improved delivery of nutrients, micro- and nanofluidics, novel drying technologies, smart and intelligent packaging, as well as 3D food printing technology. The other volumes in the series are Volume 1: Fundamentals of Food Processing Technology, which presents the basics of food preservation, covering hurdle technology, aspects of minimal processing, ohmic heating of foods, edible coatings, and electromagnetics and allied applications in food processing; and Volume 2: Advances in Nonthermal Processing Technologies, which focuses on the interesting field of nonthermal processing and its applications.
Dieses Buch beleuchtet die wichtigsten Aspekte der Verarbeitung und Charakterisierung von Ferroelektrika und Multiferroika auf Nanoebene, präsentiert eine umfassende Beschreibung der jeweiligen Eigenschaften und legt dabei den Schwerpunkt auf die Unterscheidung von Größeneffekten bei extrinsischen Eigenschaften wie Rand- oder Interface-Effekte. Eingegangen wird auch auf neuartige Nanoebene. Das Fachbuch ist in drei Abschnitte unterteilt und beschreibt die Verarbeitung (Nanostrukturierung), Charakterisierung (nanostrukturierter Materialien) und Nanoeffekte. Unter Rückgriff auf die Synergien zwischen Nano-Ferroelektrika und -Multiferroika werden Materialien behandelt, die auf allen Ebenen einer Nanostrukturierung unterzogen werden, von Technologien für keramische Materialien wie ferroelektrische Nanopulver, nanostrukturierte Keramiken und Dickschichten sowie magnetoelektrische Nanokomposit-Materialien bis hin zu freistehenden Nanoobjekten mit spezifischen Geometrien wie Nanodrähte und Nanoröhren auf verschiedenen Entwicklungsstufen. Grundlage des Buches ist die europäische Wissensplattform im Wissenschaftsbereich innerhalb der Aktion von COST (Europäische Zusammenarbeit in Wissenschaft und Technik) zu ein- und mehrphasigen Ferroika und Multiferroika mit begrenzten Geometrien (SIMUFER, Ref. MP0904). Die Autoren der Kapitelbeiträge wurden sorgfältig ausgewählt, haben allesamt ganz wesentlich zur Wissensbasis für das jeweilige Thema beigetragen und gehören vor allem zu den renommiertesten Wissenschaftlern des Fachgebiets.
Nanotechnology offers great potential to revolutionize conventional food science and the food industry. The use of nanotechnology in the food industry promises improved taste, flavor, color, texture, and consistency of foodstuffs and increased absorption and bioavailability of nutraceuticals. Food Nanotechnology: Principles and Applications examines the current state of nanoscale phenomena and processes, benefits and risks of nanotechnology. This work contains 18 chapters particularly focused on the design, production, and utilization of nanoparticles, with specific applications for the food industry. Through several studies, it has been proven that nanotechnology can offer distinct advantages over conventional methods in terms of functionality, targeted delivery of food bioactive compounds, improved food quality characteristics like texture, taste, sensory attributes and improved stability in the gastrointestinal tract, and controlled release profiles. Features Offers clear and concise coverage on application of nanotechnology in nutrient delivery, food packaging, and pathogen/pesticide detection Addresses both the technological aspects of delivering nano-based food products and the societal implications that affect take-up Covers broad range of topics including nanoemulsification, electrospraying, nanocomposites, plasma processing, and nanosensors Discusses different formulation and preparation methods for loading food bioactive compounds Exploratory in nature, this book presents the latest of such data on all aspects of applications of nanotechnology in food systems. With its practical focus on the fabrication and application of nanotechnology in food, this book is a valuable resource for students, researchers, food process engineers.
Nanotechnology for Food Packaging: Materials, Processing Technologies, and Safety Issues showcases the latest research in the use of nanotechnology in food packaging, providing an in-depth and interdisciplinary overview of the field. Nanoscale advances in materials science, processing technology and analytical techniques have led to the introduction of new, cheaper and safer packaging techniques. Simultaneously, the increasing use of renewable nanomaterials has made food packaging more sustainable. Chapters provide a comprehensive review on materials used, their structure–function relationship, and new processing technologies for the application and production of nanotechnology-based packaging materials. In addition, the book discusses the use of functional materials for the development of active, smart and intelligent packaging, possible migration and toxicity of nanomaterials for foods and regulatory aspects, and commercial applications. - Provides detailed information on the use of nanomaterials and methodologies in food packaging, possible applications and regulatory barriers to commercialization - Presents an interdisciplinary approach that brings together materials science, bioscience, and the industrial and regulatory aspects of the creation and uses of food packaging - Helps those undertaking research and development in food packaging gain a cogent understanding on how nanotechnology is leading to the emergence of new packaging technologies
Comprehensive Materials Processing, Thirteen Volume Set provides students and professionals with a one-stop resource consolidating and enhancing the literature of the materials processing and manufacturing universe. It provides authoritative analysis of all processes, technologies, and techniques for converting industrial materials from a raw state into finished parts or products. Assisting scientists and engineers in the selection, design, and use of materials, whether in the lab or in industry, it matches the adaptive complexity of emergent materials and processing technologies. Extensive traditional article-level academic discussion of core theories and applications is supplemented by applied case studies and advanced multimedia features. Coverage encompasses the general categories of solidification, powder, deposition, and deformation processing, and includes discussion on plant and tool design, analysis and characterization of processing techniques, high-temperatures studies, and the influence of process scale on component characteristics and behavior. Authored and reviewed by world-class academic and industrial specialists in each subject field Practical tools such as integrated case studies, user-defined process schemata, and multimedia modeling and functionality Maximizes research efficiency by collating the most important and established information in one place with integrated applets linking to relevant outside sources