Download Free Nanoscale Multifunctional Materials Book in PDF and EPUB Free Download. You can read online Nanoscale Multifunctional Materials and write the review.

A multidisciplinary approach that explores the diverse properties, functions, and applications of nanomaterials Drawing together the many scientific and engineering disciplines underlying the development of nanomaterials, Nanoscale Multifunctional Materials provides a multidisciplinary review of the diverse properties, functions, and applications of nanomaterials. The book examines both nanoparticles, which have larger-scale equivalents, and uniquely assembled nanomaterials, which do not have larger-scale equivalents. Readers will gain a tremendous appreciation of the versatility of nanomaterials as well as an understanding of how the same nanomaterial can have several distinct applications across a broad range of fields and industries. Nanoscale Multifunctional Materials is divided into three sections: Section I, Overview, describes the scientific phenomena underlying the special properties of nanomaterials, making them desirable as novel materials and different from conventional solids. Next, readers will learn about the effect of nanomaterials on contemporary society as well as future trends in nanomaterials production and use. Section II, Processing and Analysis, explores several experimental approaches in nanomaterial fabrication and characterization as well as in theoretical approaches in modeling and simulation. Section III, Applications, offers detailed examples of nanomaterial applications in alternative energy, thermal management, environmental cleanup, water treatment, and biomedicine. Each chapter has been written by one or more leading experts in the science, engineering, and application of nanomaterials. Within each chapter, readers will find a thorough review of the current literature, with references to facilitate further investigation of individual topics. Underscoring the multidisciplinary and multifunctional characteristics of nanomaterials, this book is recommended for students and professionals in science and engineering who need a broad perspective on both the nature and application of nanomaterials. The text also sets the stage for the development of new nanomaterials and new applications.
This book consolidates various aspects of nanomaterials, highlighting their versatility as well as how the same materials can be used in seemingly diverse applications spanning across disciplines. It captures the multi-disciplinary and multi-functional aspects of nanomaterials in a holistic way. Chapters address the key attributes of nanoscale materials that make them special and desirable as novel materials; functionality that emerges based on these unique attributes; multiple uses of nanomaterials incuding combining properties and materials selection, and then separate chapters devoted to energy, biomedical materials, environmental applications, and chemical engineering applications.
Nano-sized Multifunctional Materials: Synthesis, Properties and Applications explores how materials can be down-scaled to nanometer-size in order to tailor and control properties. These advanced, low-dimensional materials, ranging from quantum dots and nanoparticles, to ultra-thin films develop multifunctional properties. As well as demonstrating how down-scaling to nano-size can make materials multifunctional, chapters also show how this technology can be applied in electronics, medicine, energy and in the environment. This fresh approach in materials research will provide a valuable resource for materials scientists, materials engineers, chemists, physicists and bioengineers who want to learn more on the special properties of nano-sized materials. - Outlines the major synthesis chemical process and problems of advanced nanomaterials - Shows how multifunctional nanomaterials can be practically used in biomedical area, nanomedicine, and in the treatment of pollutants - Demonstrates how the properties of a variety of materials can be engineered by downscaling them to nano size
Advanced Lightweight Multifunctional Materials presents the current state-of-the-art on multifunctional materials research, focusing on different morphologies and their preparation and applications. The book emphasizes recent advances on these types of materials as well as their application. Chapters cover porous multifunctional materials, thermochromic and thermoelectric materials, shape memory materials, piezoelectric multifunctional materials, electrochromic and electrorheological, soft materials, magnetic and photochromic materials, and more. The book will be a valuable reference resource for academic researchers and industrial engineers working in the design and manufacture of multifunctional materials, composites and nanocomposites. - Provides detailed information on design, modeling and structural applications - Focuses on characteristics, processing, design and applications - Discusses the main types of lightweight multifunctional materials and processing techniques, as well as the physico-chemical insights that can lead to improved performance
The development of nanomaterials plays a fundamental role in current and future technology applications, particularly nanomaterials that have multiple functionalities. This book provides a broad overview of the effect of nanostructuring in the multifunctionality of different widely studied nanomaterials. This book is divided into four sections constituting a road map that groups materials sharing certain types of nanostructuring, including nanoporous, nanoparticled, 2D laminar nanomaterials, and computational methods for characterizations of nanostructures. This structured approach in nanomaterials research will serve as a valuable reference material for chemists, (bio)engineers, physicists, nanotechnologists, undergraduates, and professors.
Nanopapers: From Nanochemistry and Nanomanufacturing to Advanced Applications gives a comprehensive overview of the emerging technology of nanopapers. Exploring the latest developments on nanopapers in nanomaterials chemistry and nanomanufacturing technologies, this book outlines the unique properties of nanopapers and their advanced applications. Nanopapers are thin sheets or films made of nanomaterials such as carbon nanotubes, carbon nanofibers, nanoclays, cellulose nanofibrils, and graphene nanoplatelets. Noticeably, nanopapers allow highly concentrated nanoparticles to be tightly packed in a thin film to reach unique properties such as very high electrical and thermal conductivities, very low diffusivity, and strong corrosion resistance that are shared by conventional polymer nanocomposites. This book presents a concise introduction to nanopapers, covering concepts, terminology and applications. It outlines both current applications and future possibilities, and will be of great use to nanochemistry and nanomanufacturing researchers and engineers who want to learn more about how nanopapers can be applied. - Outlines the main uses of nanopapers, showing readers how this emerging technology should best be applied - Shows how the unique properties of nanopapers make them adaptable for use in a wide range of applications - Explores methods for the nanomanufacture of nanopapers
Nanoscale Fabrication, Optimization, Scale-up and Biological Aspects of Pharmaceutical Nanotechnology focuses on the fabrication, optimization, scale-up and biological aspects of pharmaceutical nanotechnology. In particular, the following aspects of nanoparticle preparation methods are discussed: the need for less toxic reagents, simplification of the procedure to allow economic scale-up, and optimization to improve yield and entrapment efficiency. Written by a diverse range of international researchers, the chapters examine characterization and manufacturing of nanomaterials for pharmaceutical applications. Regulatory and policy aspects are also discussed. This book is a valuable reference resource for researchers in both academia and the pharmaceutical industry who want to learn more about how nanomaterials can best be utilized. - Shows how nanomanufacturing techniques can help to create more effective, cheaper pharmaceutical products - Explores how nanofabrication techniques developed in the lab have been translated to commercial applications in recent years - Explains safety and regulatory aspects of the use of nanomanufacturing processes in the pharmaceutical industry
Lanthanide-Based Multifunctional Materials: From OLEDs to SIMs serves as a comprehensive and state-of the art review on these promising compounds, delivering a panorama of their extensive and rapidly growing applications. After an introductory chapter on the theoretical description of the optical and magnetic behaviour of lanthanides and on the prediction of their properties by ab-initio methods, four chapters are devoted to lanthanide-based OLEDs, including the latest trends in visible emitters, the emerging field of near infrared emitters and the first achievements attained in the field of chiral OLEDs. The use of lanthanide complexes as molecular magnets spreads over another two chapters, which explain the evolution of 4f-elements-based SIMs and the most recent advances in heterometallic 3d–4f SMMs. Other very active research areas are covered in the remaining five chapters, dedicated to lanthanide-doped germanate and tellurite glasses, luminescent materials for up-conversion, luminescent thermosensors, multimodal imaging and therapeutic agents, and chemosensors. The book is aimed at academic and industrial researchers, undergraduates and postgraduates alike, and is of particular interest for the Materials Science, Applied Physics and Applied Chemistry communities. - Includes the latest progress on lanthanide-based materials and their applications (in OLEDs, SIMs, doped matrices, up-conversion, thermosensors, theragnostics and chemosensors) - Presents basic and applied aspects of the Physics and Chemistry of lanthanide compounds, as well as future lines of action - Covers successful examples of devices and proofs-of-concept and provides guidelines for the rational design of new materials
Organized nanoassemblies of inorganic nanoparticles and organic molecules are building blocks of nanodevices, whether they are designed to perform molecular level computing, sense the environment or improve the catalytic properties of a material. The key to creation of these hybrid nanostructures lies in understanding the chemistry at a fundamental level. This book serves as a reference book for researchers by providing fundamental understanding of many nanoscopic materials.
In chapters contributed by 24 university & government laboratories, Nanoengineering of Structural, Functional, and Smart Materials combines wide-ranging research aimed at the development of multifunctional materials that are strong, lightweight, and versatile. This book explores promising and diverse approaches to the design of nanoscale