Download Free Nanoscale Cmos Vlsi Circuits Design For Manufacturability Book in PDF and EPUB Free Download. You can read online Nanoscale Cmos Vlsi Circuits Design For Manufacturability and write the review.

Cutting-Edge CMOS VLSI Design for Manufacturability Techniques This detailed guide offers proven methods for optimizing circuit designs to increase the yield, reliability, and manufacturability of products and mitigate defects and failure. Covering the latest devices, technologies, and processes, Nanoscale CMOS VLSI Circuits: Design for Manufacturability focuses on delivering higher performance and lower power consumption. Costs, constraints, and computational efficiencies are also discussed in the practical resource. Nanoscale CMOS VLSI Circuits covers: Current trends in CMOS VLSI design Semiconductor manufacturing technologies Photolithography Process and device variability: analyses and modeling Manufacturing-Aware Physical Design Closure Metrology, manufacturing defects, and defect extraction Defect impact modeling and yield improvement techniques Physical design and reliability DFM tools and methodologies
This book describes methodologies in the design of VLSI devices, circuits and their applications at nanoscale levels. The book begins with the discussion on the dominant role of power dissipation in highly scaled devices.The 15 Chapters of the book are classified under four sections that cover design, modeling, and simulation of electronic, magnetic and compound semiconductors for their applications in VLSI devices, circuits, and systems. This comprehensive volume eloquently presents the design methodologies for ultra–low power VLSI design, potential post–CMOS devices, and their applications from the architectural and system perspectives. The book shall serve as an invaluable reference book for the graduate students, Ph.D./ M.S./ M.Tech. Scholars, researchers, and practicing engineers working in the frontier areas of nanoscale VLSI design.
This book walks the reader through all the aspects of manufacturability and yield in a nano-CMOS process. It covers all CAD/CAE aspects of a SOC design flow and addresses a new topic (DFM/DFY) critical at 90 nm and beyond. This book is a must read book the serious practicing IC designer and an excellent primer for any graduate student intent on having a career in IC design or in EDA tool development.
Discover innovative tools that pave the way from circuit and physical design to fabrication processing Nano-CMOS Design for Manufacturability examines the challenges that design engineers face in the nano-scaled era, such as exacerbated effects and the proven design for manufacturability (DFM) methodology in the midst of increasing variability and design process interactions. In addition to discussing the difficulties brought on by the continued dimensional scaling in conformance with Moore's law, the authors also tackle complex issues in the design process to overcome the difficulties, including the use of a functional first silicon to support a predictable product ramp. Moreover, they introduce several emerging concepts, including stress proximity effects, contour-based extraction, and design process interactions. This book is the sequel to Nano-CMOS Circuit and Physical Design, taking design to technology nodes beyond 65nm geometries. It is divided into three parts: Part One, Newly Exacerbated Effects, introduces the newly exacerbated effects that require designers' attention, beginning with a discussion of the lithography aspects of DFM, followed by the impact of layout on transistor performance Part Two, Design Solutions, examines how to mitigate the impact of process effects, discussing the methodology needed to make sub-wavelength patterning technology work in manufacturing, as well as design solutions to deal with signal, power integrity, WELL, stress proximity effects, and process variability Part Three, The Road to DFM, describes new tools needed to support DFM efforts, including an auto-correction tool capable of fixing the layout of cells with multiple optimization goals, followed by a look ahead into the future of DFM Throughout the book, real-world examples simplify complex concepts, helping readers see how they can successfully handle projects on Nano-CMOS nodes. It provides a bridge that allows engineers to go from physical and circuit design to fabrication processing and, in short, make designs that are not only functional, but that also meet power and performance goals within the design schedule.
Based on the authors' expansive collection of notes taken over the years, Nano-CMOS Circuit and Physical Design bridges the gap between physical and circuit design and fabrication processing, manufacturability, and yield. This innovative book covers: process technology, including sub-wavelength optical lithography; impact of process scaling on circuit and physical implementation and low power with leaky transistors; and DFM, yield, and the impact of physical implementation.
During the last decade, CMOS has become increasingly attractive as a basic integrated circuit technology due to its low power (at moderate frequencies), good scalability, and rail-to-rail operation. There are now a variety of CMOS circuit styles, some based on static complementary con ductance properties, but others borrowing from earlier NMOS techniques and the advantages of using clocking disciplines for precharge-evaluate se quencing. In this comprehensive book, the reader is led systematically through the entire range of CMOS circuit design. Starting with the in dividual MOSFET, basic circuit building blocks are described, leading to a broad view of both combinatorial and sequential circuits. Once these circuits are considered in the light of CMOS process technologies, impor tant topics in circuit performance are considered, including characteristics of interconnect, gate delay, device sizing, and I/O buffering. Basic circuits are then composed to form macro elements such as multipliers, where the reader acquires a unified view of architectural performance through par allelism, and circuit performance through careful attention to circuit-level and layout design optimization. Topics in analog circuit design reflect the growing tendency for both analog and digital circuit forms to be combined on the same chip, and a careful treatment of BiCMOS forms introduces the reader to the combination of both FET and bipolar technologies on the same chip to provide improved performance.
This self-contained book addresses the need for analysis, characterization, estimation, and optimization of the various forms of power dissipation in the presence of process variations of nano-CMOS technologies. The authors show very large-scale integration (VLSI) researchers and engineers how to minimize the different types of power consumption of digital circuits. The material deals primarily with high-level (architectural or behavioral) energy dissipation.
This book provides readers with a single-source reference to the state-of-the-art in analog and mixed-signal circuit design in nanoscale CMOS. Renowned authors from academia describe creative circuit solutions and techniques, in state-of-the-art designs, enabling readers to deal with today’s technology demands for high integration levels with a strong miniaturization capability.
This is an up-to-date treatment of the analysis and design of CMOS integrated digital logic circuits. The self-contained book covers all of the important digital circuit design styles found in modern CMOS chips, emphasizing solving design problems using the various logic styles available in CMOS.
Shows readers how to gain the competitive edge in the integrated circuit marketplace This book offers a wholly unique perspective on the digital design kit. It points to hidden value in the safety margins of standard-cell libraries and shows design engineers and managers how to use this knowledge to beat the competition. Engineering the CMOS Library reveals step by step how the generic, foundry-provided standard-cell library is built, and how to extract value from existing std-cells and EDA tools in order to produce tighter-margined, smaller, faster, less power-hungry, and more yield-producing integrated circuits. It explores all aspects of the digital design kit, including the different views of CMOS std-cell libraries along with coverage of IO libraries, memory compilers, and small analog blocks. Readers will learn: How to work with overdesigned std-cell libraries to improve profitability while maintaining safety How functions usually found in std-cell libraries cover the design environment, and how to add any missing functions How to harness the characterization technique used by vendors to add characterization without having to get it from the vendor How to use verification and validation techniques to ensure proper descriptive views and even fix inconsistencies in vendor release views How to correct for possible conflicts arising from multiple versions and different vendor sources in any given integrated circuit design Complete with real-world case studies, examples, and suggestions for further research, Engineering the CMOS Library will help readers become more astute designers.