Download Free Nanopowders Of Metal Oxides And Fluorides Book in PDF and EPUB Free Download. You can read online Nanopowders Of Metal Oxides And Fluorides and write the review.

One of the directions of nanotechnology is the production of nanopowders (NPs). Nanopowders, according to the currently widely used classification of nanomaterials, belong to zero-dimensional systems in which the limitation of wave functions occurs in all three directions. Biological methods are considered the most environmentally friendly way to synthesize NPs, but the possibility of biological contamination with mutated microorganisms cannot be ruled out. This book presents a new method for producing simple and complex metal oxide and fluoride NPs, based on the “evaporation-condensation” process using pulsed electron beam evaporation. It presents the results of more than 10 years of study of the characteristics of NPs produced using the aforementioned method. This eco-friendly method ensures the production of clean NPs, which are mesoporous and suitable for use in various applications such as medicine, spintronics, optoelectronics, dosimeters, photocatalysis, semiconductors, and ultraviolet and blue lasers. Importantly, these NPs have the potential to be used as a drug delivery system and in the creation of new nanostructures that do not contain noble metals. The book will be useful for the researchers in macromolecular science, nanotechnology, chemistry, biology, and medicine, especially those with an interest in drug delivery or cancer therapy.
Photonic and Electronic Properties of Fluoride Materials: Progress in Fluorine Science, the first volume in this new Elsevier series, provides an overview of the important optical, magnetic, and non-linear properties of fluoride materials. Beginning with a brief review of relevant synthesis methods from single crystals to nanopowders, this volume offers valuable insight for inorganic chemistry and materials science researchers. Edited and written by leaders in the field, this book explores the practical aspects of working with these materials, presenting a large number of examples from inorganic fluorides in which the type of bonding occurring between fluorine and transition metals (either d- or 4f-series) give rise to peculiar properties in many fundamental and applicative domains. This one-of-a-kind resource also includes several chapters covering functional organic fluorides used in nano-electronics, in particular in liquid crystal devices, in organic light-emitting diodes, or in organic dyes for sensitized solar cells. The book describes major advances and breakthroughs achieved by the use of fluoride materials in important domains such as superconductivity, luminescence, laser properties, multiferroism, transport properties, and more recently, in fluoro-perovskite for dye-sensitized solar cells and inorganic fluoride materials for NLO, and supports future development in these varied and key areas. The book is edited by Alain Tressaud, past chair and founder of the CNRS French Fluorine Network. Each book in the collection includes the work of highly-respected volume editors and contributors from both academia and industry to bring valuable and varied content to this active field. Provides unique coverage of the physical properties of fluoride materials for chemists and material scientists Begins with a brief review of relevant synthesis methods from single crystals to nanopowders Includes valuable information about functional organic fluorides used in nano-electronics, in particular in liquid crystal devices, in organic light-emitting diodes, or in organic dyes for sensitized solar cells
Ein umfassendes Referenzwerk für Chemiker und Industriefachleute zum Thema Nanopartikel Nanopartikel aus Metalloxid sind ein wesentlicher Bestandteil zahlreicher natürlicher und technologischer Prozesse ? von der Mineralumwandlung bis zur Elektronik. Darüber hinaus kommen Metalloxid-Nanopartikel in Pulverform im Maschinenbau, in der Elektronik und der Energietechnik zum Einsatz. Das Werk Metal Oxide Nanoparticles: Formation, Functional Properties and Interfaces stellt die wichtigsten Synthese- und Formulierungsansätze bei der Nutzung von Metalloxid-Nanopartikeln als Funktionsmaterialien vor. Es werden die üblichen Verarbeitungswege erklärt und die physikalischen und chemischen Eigenschaften der Partikel mithilfe von umfassenden und ergänzenden Charakterisierungsmethoden bewertet. Dieses Werk kann als Einführung in die Formulierung von Nanopartikeln, ihre Grenzflächenchemie und ihre funktionellen Eigenschaften im Nanobereich genutzt werden. Darüber hinaus dient es zum vertiefenden Verständnis, denn das Buch enthält detaillierte Angaben zu fortschrittlichen Methoden bei der physikalischen, chemischen, Oberflächen- und Grenzflächencharakterisierung von Metalloxid-Nanopartikeln in Pulvern und Dispersionen. *Erläuterung der Anwendung von Metalloxid-Nanopartikeln und der wirtschaftlichen Auswirkungen *Betrachtung der Partikelsynthese, einschließlich der Grundsätze ausgewählter Bottom-up-Strategien *Untersuchung der Formulierung von Nanopartikeln mit einer Auswahl von Verarbeitungs- und Anwendungswegen *Diskussion der Bedeutung von Partikeloberflächen und -grenzflächen für Strukturbildung, Stabilität und funktionelle Materialeigenschaften *Betrachtung der Charakterisierung von Metalloxid-Nanopartikeln auf verschiedenen Längenskalen In diesem Buch finden Forscher im akademischen Bereich, Chemiker in der Industrie und Doktoranden wichtige Erkenntnisse über die Synthese, Eigenschaften und Anwendungen von Metalloxid-Nanopartikeln.
Colloidal Metal Oxide Nanoparticles: Synthesis, Characterization and Applications is a one-stop reference for anyone with an interest in the fundamentals, synthesis and applications of this interesting materials system. The book presents a simple, effective and detailed discussion on colloidal metal oxide nanoparticles. It begins with a general introduction of colloidal metal oxide nanoparticles, then delves into the most relevant synthesis pathways, stabilization procedures, and synthesis and characterization techniques. Final sections discuss promising applications, including bioimaging, biosensing, diagnostic, and energy applications—i.e., solar cells, supercapacitors and environment applications—i.e., the treatment of contaminated soil, water purification and waste remediation. Provides the most comprehensive resource on the topic, from fundamentals, to synthesis and characterization techniques Presents key applications, including biomedical, energy, electronic and environmental Discusses the most relevant techniques for synthesis, patterning and characterization
Functionalized Inorganic Fluorides: Synthesis, Characterization & Properties of Nanostructured Solids covers several classes of nanostructured and functionalized inorganic fluorides, oxide-fluorides, and fluorinated oxides such as silica and alumina. Ranging from powders or glass-ceramics to thin layers and coatings, they have applications as more efficient and less aggressive catalysts, UV absorbers, planar optical waveguides, integrated lasers and optical amplifiers, luminescent materials, anti-reflective coatings and high Tc superconductors. With a focus on new types of solids, such as nanopowders, hybrids, mesoporous fluorides, and intercalation compounds, the book covers new synthesis routes; physical-chemical characterizations - including morphology, structure, spectroscopic and optical behaviour; detailed ab initio investigations and simulations; and -last but not least- potential applications.
Iron Oxide Nanoparticles for Biomedical Applications: Synthesis, Functionalization and Application begins with several chapters covering the synthesis, stabilization, physico-chemical characterization and functionalization of iron oxide nanoparticles. The second part of the book outlines the various biomedical imaging applications that currently take advantage of the magnetic properties of iron oxide nanoparticles. Brief attention is given to potential iron oxide based therapies, while the final chapter covers nanocytotoxicity, which is a key concern wherever exposure to nanomaterials might occur. This comprehensive book is an essential reference for all those academics and professionals who require thorough knowledge of recent and future developments in the role of iron oxide nanoparticles in biomedicine. Unlocks the potential of iron oxide nanoparticles to transform diagnostic imaging techniques Contains full coverage of new developments and recent research, making this essential reading for researchers and engineers alike Explains the synthesis, processing and characterization of iron oxide nanoparticles with a view to their use in biomedicine
Metal Oxide Nanoparticles in Organic Solvents discusses recent advances in the chemistry involved for the controlled synthesis and assembly of metal oxide nanoparticles, the characterizations required by such nanoobjects, and their size and shape depending properties. In the last few years, a valuable alternative to the well-known aqueous sol-gel processes was developed in the form of nonaqueous solution routes. Metal Oxide Nanoparticles in Organic Solvents reviews and compares surfactant- and solvent-controlled routes, as well as providing an overview of techniques for the characterization of metal oxide nanoparticles, crystallization pathways, the physical properties of metal oxide nanoparticles, their applications in diverse fields of technology, and their assembly into larger nano- and mesostructures. Researchers and postgraduates in the fields of nanomaterials and sol-gel chemistry will appreciate this book’s informative approach to chemical formation mechanisms in relation to metal oxides.
Nanostructured Anodic Metal Oxides: Synthesis and Applications reviews the current status of fabrication strategies that have been successfully developed to generate nanoporous, nanotubular and nanofibrous anodic oxides on a range of metals. The most recent achievements and innovative strategies for the synthesis of nanoporous aluminum oxide and nanotubular titanium oxide are discussed. However, a special emphasis is placed on the possibility of fabrication of nanostructured oxide layers with different morphologies on other metals, including aluminum titanium, tantalum, tin, zinc, zirconium and copper. In addition, emerging biomedical applications of synthesized materials are discussed in detail. During the past decade, great progress has been made both in the preparation and characterization of various nanomaterials and their functional applications. The anodization of metals has proven to be reliable for the synthesis of nanoporous, nanotubular and nanofibrous metal oxides to produce a desired diameter, density, aspect ratio (length to diameter) of pores/tubes, and internal pore/tube structure. Provides an in-depth overview of anodization techniques for a range of metals Explores the emerging applications of anodic metal oxides Explains mechanisms of formation valve metal oxides via anodization