Download Free Nanophotonics And Macrophotonics For Space Environments Vi Book in PDF and EPUB Free Download. You can read online Nanophotonics And Macrophotonics For Space Environments Vi and write the review.

This book covers device design fundamentals and system applications in optical MEMS and nanophotonics. Expert authors showcase examples of how fusion of nanoelectromechanical (NEMS) with nanophotonic elements is creating powerful new photonic devices and systems including MEMS micromirrors, MEMS tunable filters, MEMS-based adjustable lenses and apertures, NEMS-driven variable silicon nanowire waveguide couplers, and NEMS tunable photonic crystal nanocavities. The book also addresses system applications in laser scanning displays, endoscopic systems, space telescopes, optical telecommunication systems, and biomedical implantable systems. Presents efforts to scale down mechanical and photonic elements into the nano regime for enhanced performance, faster operational speed, greater bandwidth, and higher level of integration. Showcases the integration of MEMS and optical/photonic devices into real commercial products. Addresses applications in optical telecommunication, sensing, imaging, and biomedical systems. Prof. Vincent C. Lee is Associate Professor in the Department of Electrical and Computer Engineering, National University of Singapore. Prof. Guangya Zhou is Associate Professor in the Department of Mechanical Engineering at National University of Singapore.
Combining the positive characteristics of microfluidics and optics, microstructured optical fibres (MOFs) have revolutionized the field of optoelectronics. Tailored guiding, diffractive structures and photonic band-gap effects are used to produce fibres with highly specialised, complex structures, facilitating the development of novel kinds of optical fibre sensors and actuators.Part One outlines the key materials and fabrication techniques used for microstructured optical fibres. Microfluidics and heat flows, MOF-based metamaterials, novel and liquid crystal infiltrated photonic crystal fibre (PCF) designs, MOFs filled with carbon nanotubes and melting of functional inorganic glasses inside PCFs are all reviewed. Part Two then goes on to investigate sensing and optofluidic applications, with the use of MOFs in structural sensing, sensing units and mechanical sensing explored in detail. PCF's for switching applications are then discussed before the book concludes by reviewing MOFs for specific nucleic acid detection and resonant bio- and chemical sensing. - Provides users with the necessary knowledge to successfully design and implement microstructured optical fibres for a broad range of uses - Outlines techniques for developing both traditional and novel types of optical fibre - Highlights the adaptability of microstructured optical fibres achieved via the use of optofluidics, sensors and actuators, by presenting a diverse selection of applications
This book sets out to build bridges between the domains of photonic device physics and neural networks, providing a comprehensive overview of the emerging field of "neuromorphic photonics." It includes a thorough discussion of evolution of neuromorphic photonics from the advent of fiber-optic neurons to today’s state-of-the-art integrated laser neurons, which are a current focus of international research. Neuromorphic Photonics explores candidate interconnection architectures and devices for integrated neuromorphic networks, along with key functionality such as learning. It is written at a level accessible to graduate students, while also intending to serve as a comprehensive reference for experts in the field.
Photonics has long been considered an attractive substrate for next generation implementations of machine-learning concepts. Reservoir Computing tremendously facilitated the realization of recurrent neural networks in analogue hardware. This concept exploits the properties of complex nonlinear dynamical systems, giving rise to photonic reservoirs implemented by semiconductor lasers, telecommunication modulators and integrated photonic chips.
The book focuses on photonic devices and systems for space applications and critically reviews the most promising research advances in the field of photonic technologies, which may have a significant impact on the performance of space systems.Photonics is emerging as a crucial enabling technology having the potential of enhancing many space systems, including the links for on-board data handling, the high-resolution measurement systems, and the processing units. The book discusses this subject with a special emphasis on the new guided-wave devices with high performance, low cost and size.Most of the scientific content of the book is novel and it is devoted to academic and industrial researchers working on the field.
This new edition details the important features of beam shaping and exposes the subtleties of the theory and techniques that are best demonstrated through proven applications. New chapters cover illumination light shaping in optical lithography; optical micro-manipulation of live mammalian cells through trapping, sorting, and transfection; and laser beam shaping through fiber optic beam delivery. The book discusses applications in lithography, laser printing, optical data storage, stable isotope separation, and spatially dispersive lasers. It also provides a history of the field and includes extensive references.
This book highlights some of the latest advances in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features contributions from participants in the 6th International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2018) in Kiev, Ukraine on August 27-30, 2018 organized by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on nanooptics, energy storage and biomedical applications. This book's companion volume also addresses topics such as materials properties, behavior, and synthesis.
Space-based observations have transformed our understanding of Earth, its environment, the solar system and the universe at large. During past decades, driven by increasingly advanced science questions, space observatories have become more sophisticated and more complex, with costs often growing to billions of dollars. Although these kinds of ever-more-sophisticated missions will continue into the future, small satellites, ranging in mass between 500 kg to 0.1 kg, are gaining momentum as an additional means to address targeted science questions in a rapid, and possibly more affordable, manner. Within the category of small satellites, CubeSats have emerged as a space-platform defined in terms of (10 cm x 10 cm x 10 cm)- sized cubic units of approximately 1.3 kg each called "U's." Historically, CubeSats were developed as training projects to expose students to the challenges of real-world engineering practices and system design. Yet, their use has rapidly spread within academia, industry, and government agencies both nationally and internationally. In particular, CubeSats have caught the attention of parts of the U.S. space science community, which sees this platform, despite its inherent constraints, as a way to affordably access space and perform unique measurements of scientific value. The first science results from such CubeSats have only recently become available; however, questions remain regarding the scientific potential and technological promise of CubeSats in the future. Achieving Science with CubeSats reviews the current state of the scientific potential and technological promise of CubeSats. This report focuses on the platform's promise to obtain high- priority science data, as defined in recent decadal surveys in astronomy and astrophysics, Earth science and applications from space, planetary science, and solar and space physics (heliophysics); the science priorities identified in the 2014 NASA Science Plan; and the potential for CubeSats to advance biology and microgravity research. It provides a list of sample science goals for CubeSats, many of which address targeted science, often in coordination with other spacecraft, or use "sacrificial," or high-risk, orbits that lead to the demise of the satellite after critical data have been collected. Other goals relate to the use of CubeSats as constellations or swarms deploying tens to hundreds of CubeSats that function as one distributed array of measurements.
Nanophotonics is where photonics merges with nanoscience and nanotechnology, and where spatial confinement considerably modifies light propagation and light-matter interaction. Describing the basic phenomena, principles, experimental advances and potential impact of nanophotonics, this graduate-level textbook is ideal for students in physics, optical and electronic engineering and materials science. The textbook highlights practical issues, material properties and device feasibility, and includes the basic optical properties of metals, semiconductors and dielectrics. Mathematics is kept to a minimum and theoretical issues are reduced to a conceptual level. Each chapter ends in problems so readers can monitor their understanding of the material presented. The introductory quantum theory of solids and size effects in semiconductors are considered to give a parallel discussion of wave optics and wave mechanics of nanostructures. The physical and historical interplay of wave optics and quantum mechanics is traced. Nanoplasmonics, an essential part of modern photonics, is also included.
This first book on this fascinating, interdisciplinary topic meets the much-felt need for an up-to-date overview of the field. Written with both beginners and professionals in mind, this ready reference begins with an introductory section explaining the basics of the various multi-photon and photochemical processes together with a description of the equipment needed. A team of leading international experts provides the latest research results on such materials as new photoinitiators, hybrid photopolymers, and metallic carbon nanotube composites. They also cover promising applications and prospective trends, including photonic crystals, microfluidic devices, biological scaffolds, metamaterials, waveguides, and functionalized hydrogels. By bringing together the essentials for both industrial and academic researchers, this is an invaluable companion for materials scientists, polymer chemists, surface chemists, surface physicists, biophysicists, and medical scientists working with 3D micro- and nanostructures.