Download Free Nanophenomena At Surfaces Book in PDF and EPUB Free Download. You can read online Nanophenomena At Surfaces and write the review.

This book presents the state of the art in nanoscale surface physics. It outlines contemporary trends in the field covering a wide range of topical areas: atomic structure of surfaces and interfaces, molecular films and polymer adsorption, biologically inspired nanophysics, surface design and pattern formation, and computer modeling of interfacial phenomena. Bridging "classical" and "nano" concepts, the present volume brings attention to the physical background of exotic condensed-matter properties. The book is devoted to Iwan Stranski and Rostislaw Kaischew, remarkable scientists, who played a crucial role in setting up the theoretical fundamentals of nucleation and crystal growth phenomena in the last century.
This timely text covers the theory and practice of surface and nanostructure determination by low-energy electron diffraction (LEED) and surface X-ray diffraction (SXRD): it is the first book on such quantitative structure analysis in over 30 years. It provides a detailed description of the theory, including cutting-edge developments and tested experimental methods. The focus is on quantitative techniques, while the qualitative interpretation of the LEED pattern without quantitative I(V) analysis is also included. Topics covered include the future study of nanoparticles, quasicrystals, thermal parameters, disorder and modulations of surfaces with LEED, with introductory sections enabling the non-specialist to follow all the concepts and applications discussed. With numerous colour figures throughout, this text is ideal for undergraduate and graduate students and researchers, whether experimentalists or theorists, in the fields of surface science, nanoscience and related technologies. It can serve as a textbook for graduate-level courses of one or two semesters.
Advances in Semiconductor Nanostructures: Growth, Characterization, Properties and Applications focuses on the physical aspects of semiconductor nanostructures, including growth and processing of semiconductor nanostructures by molecular-beam epitaxy, ion-beam implantation/synthesis, pulsed laser action on all types of III–V, IV, and II–VI semiconductors, nanofabrication by bottom-up and top-down approaches, real-time observations using in situ UHV-REM and high-resolution TEM of atomic structure of quantum well, nanowires, quantum dots, and heterostructures and their electrical, optical, magnetic, and spin phenomena. The very comprehensive nature of the book makes it an indispensable source of information for researchers, scientists, and post-graduate students in the field of semiconductor physics, condensed matter physics, and physics of nanostructures, helping them in their daily research. - Presents a comprehensive reference on the novel physical phenomena and properties of semiconductor nanostructures - Covers recent developments in the field from all over the world - Provides an International approach, as chapters are based on results obtained in collaboration with research groups from Russia, Germany, France, England, Japan, Holland, USA, Belgium, China, Israel, Brazil, and former Soviet Union countries
Mechanical Properties of Single Molecules and Polymer Aggregates Rüdiger Berger, Kurt Binder, Gregor Diezemann, Jürgen Gauß, Mark Helm, Katharina Landfester, Wolfgang Paul (Halle), Peter Virnau. Optical Properties of Individual Molecular Aggregates and Nano Particles Thomas Basché, Hans-Jürgen Butt, Gregor Diezemann, Jürgen Gauß, Klaus Müllen, Harald Paulsen, Carsten Sönnichsen, Rudolf Zentel. Structure Formation of Polymeric Building Blocks I: Self-assembly of Copolymers Kurt Binder, Holger Frey, Andreas Kilbinger (Univ. Fribourg), Ute Kolb, Michael Maskos (IMM Mainz), Wolfgang Paul (Univ. Halle), Hans Wolfgang Spiess. Structure Formation of Polymeric Building Blocks II: Complex Polymer Architectures Kurt Binder, Hans Jürgen Butt, Angelika Kühnle, Klaus Müllen, Wolfgang Paul (Univ. Halle), Erwin Schmidt, Manfred Schmidt, Hans Wolfgang Spiess, Thomas Vilgis. Structure Formation of Polymeric Building Blocks III: Polymer Complexes in Biological Applications Kurt Kremer, Heiko Luhmann, Christine Peter, Friederike Schmid, Erwin Schmidt, Manfred Schmidt, Eva Sinner (Univ. of Natural Resources, Vienna), Tanja Weil (Univ. Ulm).
This unique book is the first treatment of nanotechnology as the science controlled by the behaviour of thermodynamic small systems. It provides comprehensive discussions on fullerenes as building blocks, Raman spectroscopy as a powerful diagnostic tool, and nanotechnology as the technology bridging the gap between human-made and biological materials systems. Aimed at graduate students, scientists, researchers, and educators interested in academia, government and industry, the text is divided into four chapters. The first covers the potential of nanotechnology to develop a better, deeper understanding of the physical and chemical phenomena observed in natural systems. It also contains a section introducing nanotechnology to the public in simple, non-scientific terms. The second chapter is devoted to Raman spectroscopy and could in itself serve as a basis for a short course on its applications in materials science. The third section covers fullerenes and presents their history and development as well as discussing the structure and production of zero-dimensional, one-dimensional, and two-dimensional fullerenes. The fourth and final chapter serves as a correlation discussion and over view. It emphasizes the unique nano-phenomena exhibited by the fullerene systems as carbon based nanostructured systems. This chapter, and therefore the book, concludes with a discussion on the potential of nano-science and technology to shape the future of human society.
This book presents the perspectives of nanotechnology educators from around the world. Experts present the pressing challenges of teaching nanoscience and engineering to students in all levels of education, postsecondary and informal environments. The book was inspired by the 2014 NSF workshop for Nanoscience and Engineering Education. Since nanotechnology is a relatively new field, authors present recommendations for designing nanotechnology education programs. The chapters describe methods to teach specific topics, such as probe microscopy, size and scale, and nanomaterial safety, in classrooms around the world. Other chapters describe the ways that organizations like NNIN and the NISE Network have influenced informal nanotechnology education. Information technology plays a growing role in all types of education and several chapters are devoted to describing ways how educators can use online curricula for teaching nanotechnology to students from preschool to graduate school.
Contains lesson plans, activities, and reproducible pages for use in sixth through twelfth grade units on nanoscale science.
Nano-Optics: Fundamentals, Experimental Methods, and Applications offers insights into the fundamentals and industrial applications of nanoscale light-emitting materials and their composites. This book serves as a reference, offering an overview of existing research, with a particular focus on industrial applications. Nano-optics is the branch of nanoscience and nanotechnology that deals with interaction of light with nanoscale objects. This book explores the materials, structure, manufacturing techniques, and industrial applications of nano-optics. The applications discussed include healthcare, communication, astronomy, and satellites. - Explains the major manufacturing techniques for light-emitting nanoscale materials - Discusses how nanoscale optical materials are being used in a range of industrial applications - Assesses the challenges of using nano-optics in a mass-production context
This book is meant to serve as a textbook for beginners in the field of nanoscience and nanotechnology. It can also be used as additional reading in this multifaceted area. It covers the entire spectrum of nanoscience and technology: introduction, terminology, historical perspectives of this domain of science, unique and widely differing properties, advances in the various synthesis, consolidation and characterization techniques, applications of nanoscience and technology and emerging materials and technologies.
Nanoalloys: From Fundamentals to Emergent Applications presents and discusses the major topics related to nanoalloys at a time when the literature on the subject remains scarce. Particular attention is paid to experimental and theoretical aspects under the form of broad reviews covering the most recent developments. The book is organized into 11 chapters covering the most fundamental aspects of nanoalloys related to their synthesis and characterization, as well as their theoretical study. Aspects related to their thermodynamics and kinetics are covered as well. The coverage then moves to more specific topics, including optics, magnetism and catalysis, and finally to biomedical applications and the technologically relevant issue of self-assembly.With no current single reference source on the subject, the work is invaluable for researchers as the nanoscience field moves swiftly to full monetization. - Encapsulates physical science of structure, properties, size, composition and ordering at nanoscale, aiding synthesis of experimentation and modelling - Multi-expert and interdisciplinary perspectives on growth, synthesis and characterization of bimetallic clusters and particulates supports expansion of your current research activity into applications - Synthesizes concepts and draws links between fundamental metallurgy and cutting edge nanoscience, aiding interdisciplinary research activity