Download Free Nanoparticles And Their Biomedical Applications Book in PDF and EPUB Free Download. You can read online Nanoparticles And Their Biomedical Applications and write the review.

Biomedical Applications of Nanoparticles describes the most interesting and investigated biomedical applications of nanoparticles, emphasizing their therapeutic impact. Progress made in the therapy of severe diseases, such as cancer and difficult infections is strictly correlated to the scientific progress and technological development in the field of materials science. Nanoparticles have numerous therapeutic applications, starting with the design of new drugs, delivery systems, therapeutic materials, and their contribution to the development of preventive strategies. The book highlights the impact of nanoparticles on the therapy of infections, antimicrobial effect and also anti-cancer strategies. Successful examples are given throughout the book, along with analysis in order to improve future outcomes of novel therapies. - Highlights the term nanotherapeutics and presents several classifications of nanotherapeutics from different points-of-view - Presents the recent progress related to nanotherapeutics in the oral cavity - Provides the recent progress in the field of biomedical nanoparticles
Nanotechnology is expected to bring revolutionary changes in a variety of fields. This volume describes nanoparticles and their biomedical applications, and covers metal nanoparticles, metal oxide nanoparticles, rare earth based nanoparticles and graphene oxide nanoparticles. It elaborates on a number of biomedical applications, including therapeutic applications. It addresses the topic of green synthesis, in view of increasing health and environmental concerns.
Nanoparticles for Biomedical Applications: Fundamental Concepts, Biological Interactions and Clinical Applications brings into one place information on the design and biomedical applications of different classes of nanoparticles. While aspects are dealt with in individual journal articles, there is not one source that covers this area comprehensively. This book fills this gap in the literature. - Outlines an in-depth review of biomedical applications of a variety of nanoparticle classes - Discusses the major techniques for designing nanoparticles for use in biomedicine - Explores safety and regulatory aspects for the use of nanoparticles in biomedicine
This book highlights the evolution of, and novel challenges currently facing, nanomaterials science, nanoengineering, and nanotechnology, and their applications and development in the biological and biomedical fields. It details different nanoscale and nanostructured materials syntheses, processing, characterization, and applications, and considers improvements that can be made in nanostructured materials with their different biomedical applications. The book also briefly covers the state of the art of different nanomaterials design, synthesis, fabrication and their potential biomedical applications. It will be particularly useful for reading and research purposes, especially for science and engineering students, academics, and industrial researchers.
Nanotechnology is the application of science to control matter at the molecular level. It has become one of the most promising applied technologies in all areas of science. Nanoparticles have multi-functional properties and have created very interesting applications in various fields such as medicine, nutrition, bioenergy, agriculture and the environment. But the biogenic syntheses of monodispersed nanoparticles with specific sizes and shapes have been a challenge in biomaterial science. Nanoparticles are of great interest due to their extremely small size and large surface-to-volume ratio, which lead to both chemical and physical differences in their properties (e.g., mechanical properties, biological and sterical properties, catalytic activity, thermal and electrical conductivity, optical absorption and melting point) compared to bulk of the same chemical composition. Recently, however, synthesizing metal nanoparticles using green technology via microorganisms, plants, viruses, and so on, has been extensively studied and has become recognized as a green and efficient way for further exploiting biological systems as convenient nanofactories. Thus the biological synthesis of nanoparticles is increasingly regarded as a rapid, ecofriendly, and easily scaled-up technology. Today researchers are developing new techniques and materials using nanotechnology that may be suitable for plants to boost their native functions. Recently, biological nanoparticles were found to be more pharmacologically active than physico-chemically synthesized nanoparticles. Various applications of biosynthesized nanoparticles have been discovered, especially in the field of biomedical research, such as applications to specific delivery of drugs, use for tumor detection, angiogenesis, genetic disease and genetic disorder diagnosis, photoimaging, and photothermal therapy. Further, iron oxide nanoparticles have been applied to cancer therapy, hyperthermia, drug delivery, tissue repair, cell labeling, targeting and immunoassays, detoxification of biological fluids, magnetic resonance imaging, and magnetically responsive drug delivery therapy. Nanoparticle synthesis for plant byproducts for biomedical applications has vast potential. This book offers researchers in plant science and biomedicine the latest research and opportunity to develop new tools for the synthesis of environmentally friendly and cost-effective nanoparticles for applications in biomedicine as well as other various fields.
This book highlights the wide applications of nanomaterials in healthcare and environmental remediation. Presenting nano-based materials that positively influence the growth and proliferation of cells present in soft and hard tissue and are used for the regeneration bone tissue and/or suppression of cancer cells, it also discusses the natural products that can be incorporated in nanofibers for the treatment of cancer. Further, it describes the use of blending and functionalization to produce chitosan nanofibers for biomedical applications, and reviews the role of plasma-enhanced gold nanoparticles in diagnostics and therapeutics. Lastly, the book also introduces various nanotechnology approaches for the removal of waste metabolites in drinking water, and explores the emerging applications of nanorobotics in medicine. Given its scope, this book is a valuable resource for scientists, clinicians, engineers and researchers aiming to gain a better understanding of the various applications of nanotechnology.
MICROBIAL INTERACTIONS AT NANOBIOTECHNOLOGY INTERFACES This book covers a wide range of topics including synthesis of nanomaterials with specific size, shape, and properties, structure-function relationships, tailoring the surface of nanomaterials for improving the properties, interaction of nanomaterials with proteins/microorganism/eukaryotic cells, and applications in different sectors. This book also provides a strong foundation for researchers who are interested to venture into developing functionalized nanomaterials for any biological applications in their research. Practical concepts such as modelling nanomaterials, and simulating the molecular interactions with biomolecules, transcriptomic or genomic approaches, advanced imaging techniques to investigate the functionalization of nanomaterials/interaction of nanomaterials with biomolecules and microorganisms are some of the chapters that offer significant benefits to the researchers.
This book will focus on synthesis, coating and functionalization chemistry of selected nanoparticles that are most commonly used in various biomedical applications. Apart from standard selected chemical synthetic methods, it focusses on design consideration of functionalization, selected coating chemistry for transforming as synthesized nanoparticle, selected conjugation chemistries and purification approach for such nanoparticles. It also includes state-of-art/future prospect of nanodrugs suitable for clinical applications. There will material on general application potential of these nanoparticles, importance of functionalization and common problems faced by non-chemists.
This book describes the different methodologies for producing and synthesizing silver nanoparticles (AgNPs) of various shapes and sizes. It also provides an in-depth understanding of the new methods for characterizing and modifying the properties of AgNPs as well as their properties and applications in various fields. This book is a useful resource for a wide range of readers, including scientists, engineers, doctoral and postdoctoral fellows, and scientific professionals working in specialized fields such as medicine, nanotechnology, spectroscopy, analytical chemistry diagnostics, and plasmonics.
An overview of nanotechnology and its potential The field of nanotechnology is undergoing rapid developments on many fronts. This reference provides a comprehensive review of various nanotechnologies with a view to their biomedical applications. With chapters contributed by distinguished scientists from diverse disciplines, Biomedical Applications of Nanotechnology : Reviews recent advances in the designing of various nanotechnologies based on nucleic acids, polymers, biomaterials, and metals Discusses biomedical nanotechnology in areas such as drug and gene delivery Covers advanced aspects of imaging and diagnostics Includes a chapter on the issue of nanotoxicology Complete with figures and tables, this is a practical, hands-on reference book for researchers in pharmaceutical and biotech industries, biomedical engineers, pharmaceutical scientists, pharmacologists, and materials scientists as well as for the policymakers who need to understand the potential of nanotechnology. It is also an excellent resource book for graduate-level students in pharmaceutical sciences, biomedical engineering, and other fields in which nanotechnology is playing an increasingly important role.