Download Free Nanoparticle Technologies Book in PDF and EPUB Free Download. You can read online Nanoparticle Technologies and write the review.

Nanoparticle technology, which handles the preparation, processing, application and characterisation of nanoparticles, is a new and revolutionary technology. It becomes the core of nanotechnology as an extension of the conventional Fine Particle / Powder Technology. Nanoparticle technology plays an important role in the implementation of nanotechnology in many engineering and industrial fields including electronic devices, advanced ceramics, new batteries, engineered catalysts, functional paint and ink, Drug Delivery System, biotechnology, etc.; and makes use of the unique properties of the nanoparticles which are completely different from those of the bulk materials. This new handbook is the first to explain complete aspects of nanoparticles with many application examples showing their advantages and advanced development. There are handbooks which briefly mention the nanosized particles or their related applications, but no handbook describing the complete aspects of nanoparticles has been published so far. The handbook elucidates of the basic properties of nanoparticles and various nanostructural materials with their characterisation methods in the first part. It also introduces more than 40 examples of practical and potential uses of nanoparticles in the later part dealing with applications. It is intended to give readers a clear picture of nanoparticles as well as new ideas or hints on their applications to create new materials or to improve the performance of the advanced functional materials developed with the nanoparticles. * Introduces all aspects of nanoparticle technology, from the fundamentals to applications. * Includes basic information on the preparation through to the characterization of nanoparticles from various viewpoints * Includes information on nanostructures, which play an important role in practical applications.
This book is a good introductory work to nanoparticle technology. It consists of nine complementary chapters that can be read independently. This book covers promising nanoparticles fabrication technologies with a focus on scalable processes. Integration of nanoparticles into 2D and 3D structures are covered in detail. The most promising applications of nanoparticles in the energy, optoelectronic and biomedical sectors are summarized and discussed. Current issues and challenges related to nanoparticles production and utilisation are also discussed in the book. Complete and simple overview of the field Contains practical examples that makes the book also accessible for industrialists, engineers and managers Chapters can be read relatively independently so experienced researchers can go directly to the them of interest Advantages, drawbacks and challenges are described with practical examples
This book provides an overview of nanoparticle production methods, scale-up issues drawing attention to industrial applicability, and addresses their successful applications for commercial use. There is a need for a reference book which will address various aspects of recent progress in the methods of development of nanoparticles with a focus on polymeric and lipid nanoparticles, their scale-up techniques, and challenges in their commercialization. There is no consolidated reference book that discusses the emerging technologies for nanoparticle manufacturing. This book focuses on the following major aspects of emerging technologies for nano particle manufacturing. I. Introduction and Biomedical Applications of Nanoparticles II. Polymeric Nanoparticles III. Lipid Nanoparticles IV. Metallic Nanoparticles V. Quality Control for Nanoparticles VI. Challenges in Scale-Up Production of Nanoparticles VII. Injectable Nanosystems VIII. Future Directions and Challenges Leading scientists are selected as chapter authors who have contributed significantly in this field and they focus more on emerging technologies for nanoparticle manufacturing, future directions, and challenges.
Nanoparticle therapeutics: Production Technologies, Types of Nanoparticles, and Regulatory Aspects employs unique principles for applications in cell-based therapeutics, diagnostics and mechanistics for the study of organ physiology, disease etiology and drug screening of advanced nanoparticles and nanomaterials. The book focuses on the extrapolation of bioengineering tools in the domain of nanotechnology and nanoparticles therapeutics, fabrication, characterization and drug delivery aspects. It acquaints scientists and researchers on the experiential and experimental aspects of nanoparticles and nanotechnology to equip their rational application in various fields, especially in differential diagnoses and in the treatment of diverse diseased states. This complete resource provides a holistic understanding of the principle behind formation, characterization, applications, regulations and toxicity of nanoparticles employing myriad principles of nanotechnology. Investigators, pharmaceutical researchers, and advanced students working on technology advancement in the areas of designing targeted therapies, nanoscale imaging systems and diagnostic modalities in human diseases where nanoparticles can be used as a critical tool for technology advancement in drug delivery systems will find this book useful. Brings together the novel applications of nanotechnology in biological fields Explores perspectives on technologies through highly organized tables, illustrative figures and flow charts Addresses key multidisciplinary challenges faced by nanotechnologists to foster collaboration among biologists, chemists, physicists, engineers and clinicians
Fundamentals of Nanoparticles: Classifications, Synthesis Methods, Properties and Characterization explores the nanoparticles and architecture of nanostructured materials being used today in a comprehensive, detailed manner. This book focuses primarily on the characterization, properties and synthesis of nanoscale materials, and is divided into three major parts. This is a valuable reference for materials scientists, and chemical and mechanical engineers working in R&D and academia, who want to learn more about how nanoparticles and nanomaterials are characterized and engineered. Part one covers nanoparticles formation, self-assembly in the architecture nanostructures, types and classifications of nanoparticles, and signature physical and chemical properties, toxicity and regulations. Part two presents different ways to form nanometer particles, including bottom-up and top-down approaches, the classical and non-classical theories of nanoparticles formation and self-assembly, surface functionalization and other surface treatments to allow practical use. Part three covers characterization of nanoparticles and nanostructured materials, including the determination of size and shape, in addition to atomic and electronic structures and other important properties. Includes new physical and chemical techniques for the synthesis of nanoparticles and architecture nanostructures Features an in-depth treatment of nanoparticles and nanostructures, including their characterization and chemical and physical properties Explores the unusual properties of materials that are developed by modifying their shape and composition and by manipulating the arrangement of atoms and molecules Explains important techniques for the synthesis, fabrication and the characterization of complex nano-architectures
This handbook explains aspects of nanoparticles with many application examples showing their advantages and advanced development.
Nanoparticles for Biomedical Applications: Fundamental Concepts, Biological Interactions and Clinical Applications brings into one place information on the design and biomedical applications of different classes of nanoparticles. While aspects are dealt with in individual journal articles, there is not one source that covers this area comprehensively. This book fills this gap in the literature. Outlines an in-depth review of biomedical applications of a variety of nanoparticle classes Discusses the major techniques for designing nanoparticles for use in biomedicine Explores safety and regulatory aspects for the use of nanoparticles in biomedicine
Phytonanotechnology: Challenges and Prospects consolidates information on the use of phytonanoparticles for biomedical, environmental and agricultural applications, covering recent advances in experimental and theoretical studies on various properties of nanoparticles derived from plant sources. The book deals with various attributes of phytonanoparticles, discussing their current and potential applications. In addition, it explores the development of phytonanoparticles, synthesis techniques, characterization techniques, environmental remediation applications, anti-microbial properties, miscellaneous applications, and multi-functional applications. Risks associated with nanoparticles are also discussed. This book is an important reference for materials scientists, engineers, environmental scientists, food scientists and biomedical scientists who want to learn more about the applications of nanoparticles derived from plant sources. Explores synthesis methods of phytonanoparticles from a variety of plant groups Discusses the major biological reactions of phytonanoparticles Outlines the major opportunities and challenges of using phytonanoparticles in biomedical, environmental and agricultural applications
Several nanoparticle applications in diagnosis and imaging, drug delivery, and tumor treatment are reported. Size and shape, along with bulk and surface composition, play critical roles in these applications. Magnetic sensing and drug delivery are the most significant and biggest potential applications in the near future. Nanoparticles improve bioavailability and drug exposure. A wide variety of optical biosensing techniques have been developed, with the possibility of 2D and 3D multianalyte imaging. Surface-enhanced Raman spectroscopy is particularly suitable for biomedical applications, providing very high sensitivity, molecular information, and parallel imaging. High sensitivity electroanalytical and electrical sensing are achieved using nanoparticle attributes. Nontoxic iron-oxide nanoparticle formulations are used in magnetic relaxation switch assay sensors. The thermal properties of metallic nanoparticles under infrared radiation are currently being applied in gene therapy and controlled drug release.
Nanoparticles are beneficial for greenhouse gas mitigation, optimized solvent utilization in paints, water purification and filtration, pollution detection and remediation, and development of alternative green manufacturing technologies. However, nanoparticle production and utilization raise several toxicity issues. Quantification of the toxicity level of nanoparticles is challenging. It requires a multidisciplinary approach that includes materials science, biology, biocompatibility, and toxicity. Size, surface composition, and crystal structure are the key parameters. Other factors including dispersing medium such as serum, dosimetry, and morphology are also important as are proper risk analysis and communication of the outcome. Like any other new technology, nanoparticles provide positive and negative impacts in key sectors. More studies on societal implications are needed to address numerous issues related to governance, risk, ethics, law, and equity.