Download Free Nanometer Cmos Rfics For Mobile Tv Applications Book in PDF and EPUB Free Download. You can read online Nanometer Cmos Rfics For Mobile Tv Applications and write the review.

Nanometer CMOS RFICs for Mobile TV Applications focuses on how to break the trade-off between power consumption and performance (linearity and noise figure) by optimizing the mobile TV front-end dynamic range in three hierarchical levels: the intrinsic MOSFET level, the circuit level, and the architectural level. It begins by discussing the fundamental concepts of MOSFET dynamic range, including nonlinearity and noise. It then moves to the circuit level introducing the challenges associated with designing wide-dynamic range, variable-gain, broadband low-noise amplifiers (LNAs). The book gives a detailed analysis of a new noise-canceling technique that helps CMOS LNAs achieve a sub - 2 dB wideband noise figure. Lastly, the book deals with the front-end dynamic range optimization process from the systems perspective by introducing the active and passive automatic gain control (AGC) mechanism.
This book presents high-/mixed-voltage analog and radio frequency (RF) circuit techniques for developing low-cost multistandard wireless receivers in nm-length CMOS processes. Key benefits of high-/mixed-voltage RF and analog CMOS circuits are explained, state-of-the-art examples are studied, and circuit solutions before and after voltage-conscious design are compared. Three real design examples are included, which demonstrate the feasibility of high-/mixed-voltage circuit techniques. Provides a valuable summary and real case studies of the state-of-the-art in high-/mixed-voltage circuits and systems; Includes novel high-/mixed-voltage analog and RF circuit techniques – from concept to practice; Describes the first high-voltage-enabled mobile-TVRF front-end in 90nm CMOS and the first mixed-voltage full-band mobile-TV Receiver in 65nm CMOS; Demonstrates the feasibility of high-/mixed-voltage circuit techniques with real design examples.
Offers an up-to-date description of modern multifunctional antenna systems and microwave components Compact multifunctional antennas are of great interest in the field of antennas and wireless communication systems, but there are few, if any, books available that fully explore the multifunctional concept. Divided into six chapters, Compact Multifunctional Antennas for Wireless Systems encompasses both the active and passive multifunctional antennas and components for microwave systems. It provides a systematic, valuable reference for antenna/microwave researchers and designers. Beginning with such novel passive components as antenna filters, antenna packaging covers, and balun filters, the book discusses various miniaturization techniques for the multifunctional antenna systems. In addition to amplifying and oscillating antennas, the book also covers design considerations for frequency- and pattern-reconfigurable antennas. The last chapter is dedicated to the field of solar cell integrated antennas. Inside, readers will find comprehensive chapters on: Compact Multifunctional Antennas in Microwave Wireless Systems Multifunctional Passive Integrated Antennas and Components Reconfigurable Antennas Receiving Amplifying Antennas Oscillating Antennas Solar cell integrated Antennas Aimed at professional engineers and researchers designing compact antennas for wireless applications, Compact Multifunctional Antennas for Wireless Systems will prove to be an invaluable tool.
Final program for the CMOSET 2008 conference.
This book describes the state-of-the-art in RF, analog, and mixed-signal circuit design for Software Defined Radio (SDR). It synthesizes for analog/RF circuit designers the most important general design approaches to take advantage of the most recent CMOS technology, which can integrate millions of transistors, as well as several real examples from the most recent research results.
A transistor-level, design-intensive overview of high speed and high frequency monolithic integrated circuits for wireless and broadband systems from 2 GHz to 200 GHz, this comprehensive text covers high-speed, RF, mm-wave, and optical fibre circuits using nanoscale CMOS, SiGe BiCMOS, and III-V technologies. Step-by-step design methodologies, end-of chapter problems, and practical simulation and design projects are provided, making this an ideal resource for senior undergraduate and graduate courses in circuit design. With an emphasis on device-circuit topology interaction and optimization, it gives circuit designers and students alike an in-depth understanding of device structures and process limitations affecting circuit performance.
New Materials and Devices for 5G Applications and Beyond focuses on the materials, device architectures and enabling integration schemes for 5G applications and emerging technologies. It gives a comprehensive overview of the trade-offs, challenges and unique properties of novel upcoming technologies. Starting from the application side and its requirements, the book examines different technologies under consideration for the different functions, both more conventional to exploratory, and within this context the book provides guidance to the reader on how to possibly optimize the system for a particular application. This book aims at guiding the reader through the technologies required to enable 5G applications, with the main focus on mm-wave frequencies, up to THz. New Materials and Devises for 5G Applications and Beyond is suitable for industrial researchers and development engineers, and researchers in materials science, device engineering and circuit design. - Reviews challenges and emerging opportunities for materials, devices, and integration to enable 5G technologies - Includes discussion of technologies such as RF-MEMs, RF FINFETs, and transistors based on current and emerging materials (InP, GaN, etc.) - Focuses on mm-wave frequencies up to the terahertz regime
Communications technology at a frequency range into Terahertz (THz) levels has attracted attention because it promises near-fibre-optic-speed wireless links for the 5G and post-5G world. Transmitter and receiver integrated circuits based on CMOS, which has the ability to realize such circuits with low power consumption at a low cost, are expected to become increasingly widespread, with much research into the underlying electronics currently underway.
This excellent survey of state-of-the-art techniques discusses the MTCMOS technology that has emerged as an increasingly popular technique to control the escalating leakage power, while maintaining high performance. It addresses the leakage problem in a number of designs for combinational, sequential, dynamic and current-steering logic.
Reliability concerns and the limitations of process technology can sometimes restrict the innovation process involved in designing nano-scale analog circuits. The success of nano-scale analog circuit design requires repeat experimentation, correct analysis of the device physics, process technology, and adequate use of the knowledge database. Starting with the basics, Nano-Scale CMOS Analog Circuits: Models and CAD Techniques for High-Level Design introduces the essential fundamental concepts for designing analog circuits with optimal performances. This book explains the links between the physics and technology of scaled MOS transistors and the design and simulation of nano-scale analog circuits. It also explores the development of structured computer-aided design (CAD) techniques for architecture-level and circuit-level design of analog circuits. The book outlines the general trends of technology scaling with respect to device geometry, process parameters, and supply voltage. It describes models and optimization techniques, as well as the compact modeling of scaled MOS transistors for VLSI circuit simulation. • Includes two learning-based methods: the artificial neural network (ANN) and the least-squares support vector machine (LS-SVM) method • Provides case studies demonstrating the practical use of these two methods • Explores circuit sizing and specification translation tasks • Introduces the particle swarm optimization technique and provides examples of sizing analog circuits • Discusses the advanced effects of scaled MOS transistors like narrow width effects, and vertical and lateral channel engineering Nano-Scale CMOS Analog Circuits: Models and CAD Techniques for High-Level Design describes the models and CAD techniques, explores the physics of MOS transistors, and considers the design challenges involving statistical variations of process technology parameters and reliability constraints related to circuit design.