Download Free Nanomedicine Manufacturing And Applications Book in PDF and EPUB Free Download. You can read online Nanomedicine Manufacturing And Applications and write the review.

Nanomedicine explores the modification and enhancement of the properties and performances of typical drugs to treat various diseases. Nano-based medicines have advantages in several ways, such as in nanotherapeutics, nanotheranostics, and nanodiagnostics. Nanomedicine Manufacturing and Applications effectively explores the major manufacturing techniques and applications of nanomaterial-based medicine in the areas of chemotherapy, biochips, insulin pumps, and other treatment methods. This book explains how nanomedicines are developed from nanoparticles as well as their biomedical and other applications related to healthcare. This book is an important reference source for nanoscientists, biomaterials scientists, and biomedical engineers who want to learn more about how nano-based medicines are made and used. - Outlines the process of making nanomedicine as well as nanodrug carriers, with a focus on nanomedicine for cancer treatment. - Explains the formulation and manufacturing process of nanomedicines, showing how to build these materials. - Demonstrates how nano-based medicines are being used to tackle a range of diseases in a way that conventional medicines cannot.
This volume focuses on the fundamentals and advancements in micro and nanomanufacturing technologies applied in the biomedical and biochemical domain. The contents of this volume provide comprehensive coverage of the physical principles of advanced manufacturing technologies and the know-how of their applications in the fabrication of biomedical devices and systems. The book begins by documenting the journey of miniaturization and micro-and nano-fabrication. It then delves into the fundamentals of various advanced technologies such as micro-wire moulding, 3D printing, lithography, imprinting, direct laser machining, and laser-induced plasma-assisted machining. It also covers laser-based technologies which are a promising option due to their flexibility, ease in control and application, high precision, and availability. These technologies can be employed to process several materials such as glass, polymers: polycarbonate, polydimethylsiloxane, polymethylmethacrylate, and metals such as stainless steel, which are commonly used in the fabrication of biomedical devices, such as microfluidic technology, optical and fiber-optic sensors, and electro-chemical bio-sensors. It also discusses advancements in various MEMS/NEMS based technologies and their applications in energy conversion and storage devices. The chapters are written by experts from the fields of micro- and nano-manufacturing, materials engineering, nano-biotechnology, and end-users such as clinicians, engineers, academicians of interdisciplinary background. This book will be a useful guide for academia and industry alike.
Nanotechnology is a multidisciplinary field that is revolutionizing the way we detect and treat damage to the human body. Nanomedicine applies nanotechnology to highly specific medical interventions for the prevention, diagnosis, and treatment of diseases. They are increasingly being used to overcome biological barriers in the body to improve the way we deliver compounds to specific tissues and organs. In particular, nanomedicines have been shown to be beneficial for stabilizing therapeutic compounds, overcoming obstacles to cellular and tissue uptake, and improving biodistribution of compounds to target sites in vivo. Nanomedicines have demonstrated significant therapeutic advantages for a multitude of biomedical applications, however the clinical translation of these nanotechnology platforms has not progressed as quickly as the plethora of positive results would have suggested. Understanding the advances in nanomedicine to date and the challenges that still need to be overcome, will allow future research to improve on existing platforms and to address the current translational and regulatory limitations. This eBook “Advances and Challenges in Nanomedicine” has brought together experts in the fields of nanomedicine, nanotechnology, nanotoxicology, pharmaceutics, manufacturing, and translation to discuss the application of nanotechnology to drug delivery. This information is presented as original research, opinion, perspective, and review articles. The goal of this eBook is to generate collaborative discussion on the current status, general trends, challenges, strategies, and future direction of pharmaceutical nanotechnology, as well as highlight current and emerging nanoparticulate platforms with potential medical applications.
Biomedical Applications of Nanoparticles describes the most interesting and investigated biomedical applications of nanoparticles, emphasizing their therapeutic impact. Progress made in the therapy of severe diseases, such as cancer and difficult infections is strictly correlated to the scientific progress and technological development in the field of materials science. Nanoparticles have numerous therapeutic applications, starting with the design of new drugs, delivery systems, therapeutic materials, and their contribution to the development of preventive strategies. The book highlights the impact of nanoparticles on the therapy of infections, antimicrobial effect and also anti-cancer strategies. Successful examples are given throughout the book, along with analysis in order to improve future outcomes of novel therapies. - Highlights the term nanotherapeutics and presents several classifications of nanotherapeutics from different points-of-view - Presents the recent progress related to nanotherapeutics in the oral cavity - Provides the recent progress in the field of biomedical nanoparticles
Nanoscale Fabrication, Optimization, Scale-up and Biological Aspects of Pharmaceutical Nanotechnology focuses on the fabrication, optimization, scale-up and biological aspects of pharmaceutical nanotechnology. In particular, the following aspects of nanoparticle preparation methods are discussed: the need for less toxic reagents, simplification of the procedure to allow economic scale-up, and optimization to improve yield and entrapment efficiency. Written by a diverse range of international researchers, the chapters examine characterization and manufacturing of nanomaterials for pharmaceutical applications. Regulatory and policy aspects are also discussed. This book is a valuable reference resource for researchers in both academia and the pharmaceutical industry who want to learn more about how nanomaterials can best be utilized. - Shows how nanomanufacturing techniques can help to create more effective, cheaper pharmaceutical products - Explores how nanofabrication techniques developed in the lab have been translated to commercial applications in recent years - Explains safety and regulatory aspects of the use of nanomanufacturing processes in the pharmaceutical industry
3D Printing Technology in Nanomedicine provides an integrated and introductory look into the rapidly evolving field of nanobiotechnology. It demystifies the processes of commercialization and discusses legal and regulatory considerations. With a focus on nanoscale processes and biomedical applications, users will find this to be a comprehensive resource on how 3D printing can be utilized in a range of areas, including the diagnosis and treatment of a variety of human diseases. - Examines the emerging market of 3D-printed biomaterials and their clinical applications, with a particular focus on both commercial and premarket tools - Examines the promising market of 3D-printed nanoparticles, nanomaterial, biomaterials, composite nanomaterial and their clinical applications in the cardiovascular and chemotherapy realms - Develops the concept of integrating different technologies along the hierarchical structure of biological systems
Biomedical Applications of Functionalized Nanomaterials: Concepts, Development and Clinical Translation presents a concise overview of the most promising nanomaterials functionalized with ligands for biomedical applications. The first section focuses on current strategies for identifying biological targets and screening of ligand to optimize anchoring to nanomaterials, providing the foundation for the remaining parts. Section Two covers specific applications of functionalized nanomaterials in therapy and diagnostics, highlighting current practice and addressing major challenges, in particular, case studies of successfully developed and marketed functionalized nanomaterials. The final section focuses on regulatory issues and clinical translation, providing a legal framework for their use in biomedicine. This book is an important reference source for worldwide drug and medical devices policymakers, biomaterials scientists and regulatory bodies.
This forward-looking book focuses on the recent advances in nanomedicine and drug delivery. It outlines the extraordinary new tools that have become available in nanomedicine and presents an integrated set of perspectives that describe where we are now and where we should be headed to put nanomedicine devices into applications as quickly as possible, while also considering the possible dangers of nanomedicine. The book considers the full range of nanomedicinal applications that employ molecular nanotechnology inside the human body, from the perspective of a future practitioner in an era of widely available nanomedicine. Written by some of the most innnovative minds in medicine and engineering, this unique volume will help professionals understand cutting-edge and futuristic areas of research that can have tremendous payoff in terms of improving human health. Readers will find insightful discussions of nanostructured intelligent materials and devices that are considered technically feasible and which have a high potential to produce advances in medicine in the near future. Topics include: Health benefits of phytochemicals and the application of colloidal delivery systems Study of non-covalent attachment of recombinant targeting proteins to polymer-modified Adenoviral gene delivery vectors The role of nanoparticles as adjuvants for mucosal vaccine delivery Poly(amido-amine)s as delivery styems for biologically active substances Antimicrobial activity of silver nanoparticles Nanomedicine in the use of cancer treatment Dendrimers, capsules based on lipid vesicles for drug delivery Many other recent achievements
This book provides an overview of nanoparticle production methods, scale-up issues drawing attention to industrial applicability, and addresses their successful applications for commercial use. There is a need for a reference book which will address various aspects of recent progress in the methods of development of nanoparticles with a focus on polymeric and lipid nanoparticles, their scale-up techniques, and challenges in their commercialization. There is no consolidated reference book that discusses the emerging technologies for nanoparticle manufacturing. This book focuses on the following major aspects of emerging technologies for nano particle manufacturing. I. Introduction and Biomedical Applications of Nanoparticles II. Polymeric Nanoparticles III. Lipid Nanoparticles IV. Metallic Nanoparticles V. Quality Control for Nanoparticles VI. Challenges in Scale-Up Production of Nanoparticles VII. Injectable Nanosystems VIII. Future Directions and Challenges Leading scientists are selected as chapter authors who have contributed significantly in this field and they focus more on emerging technologies for nanoparticle manufacturing, future directions, and challenges.
Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids addresses several issues related to safe and effective delivery of nucleic acids (NAs) using nanoparticles. A further emphasis would be laid on the mechanism of delivery of NAs, the barriers encountered and the strategies adapted to combat them. An exhaustive account of the advantages as well shortcomings of all the delivery vectors being employed in delivery of various NAs will be provided. On final note the regulatory aspects of nanoparticles mediated NA would be discussed, with focus on their clinical relevance. The design and development of nucleic acid-based therapeutics for the treatment of diseases arising from genetic abnormalities has made significant progress over the past few years. NAs have been widely explored for the treatment of cancer and infectious diseases or to block cell proliferation and thereby caused diseases. Advances in synthetic oligonucleotide chemistry resulted in synthesis of NAs that are relatively stable in in vivo environments. However, cellular targeting and intracellular delivery of NAs still remains a challenge. Further development of NA-based therapeutics depends on the progress of safe and effective carriers for systemic administration. Nanomedicine has facilitated availability of vectors with diminished cytotoxicity and enhanced efficacy which are rapidly emerging as systems of choice. These vectors protect NAs from enzymatic degradation by forming condensed complexes along with targeted tissue and cellular delivery. During the past few years, a myriad reports have appeared reporting delivery of NAs mediated by nanoparticles. This book will provide an overview of nanoparticles being employed in the in vitro and in vivo delivery of therapeutically relevant NAs like DNA, siRNA, LNA, PNA, etc. - Provides a complete overview of the applicatiosn of nanomedicine in the delivery of nucleic acids, from characterization of nanoparticles, to in vitro and in vivo studies - Discusses delivery issues of less well explored nucleic acids, like PNAs, Ribozymes, DNAzymes, etc. - Summarizes the current state of research in nucleic acid delivery and underscores the future of nanomedicine in this field