Download Free Nanomaterials In Extreme Environments Book in PDF and EPUB Free Download. You can read online Nanomaterials In Extreme Environments and write the review.

This book focuses on the behaviour of nanomaterials under extreme conditions of high temperature, irradiation by electron/ions and neutrons as well as in mechanical and corrosion extremes. The theoretical approaches and modeling are presented with numerous results of experimental studies. Different processing methods of extreme-tolerant nanomaterials are described. Many application examples from high-temperature technique, nuclear reactors of new generations, aerospace industry, chemical and general engineering, sensor facility, power engineering, electronics, catalysis and medical preparations are also contained. Some unresolved problems are emphasized.
Nanomaterials have supported humankind’s advancement, becoming one of the most important industry sectors, and are expected to rise to the top by 2030. However, significant challenges must be overcome, such as the performance and efficiency of the material under different environmental conditions. This book seeks to promote a critical view on using nanomaterials under extreme conditions found in our body, planet, and outer space. Therefore, nanomaterials are covered from multiple points of view, allowing the reader to get an enriching presentation of current knowledge on nanomaterials, limitations, advancements, and applications under extreme conditions.
This text presents the most current knowledge on the environmental impact of materials and products developed using nanotechnology. Although nanomaterials are revolutionising electronics, medicine, transportation and many other industries, they pose risks to living beings and ecosystems that are barely understood. Leading researchers here consider the science of nanomaterials, their behaviour in the environment, risk assessment and toxicology, and the future of nanomaterials.
Nanomaterial Characterization Providing various properties of nanomaterials and the various methods available for their characterization Over the course of the last few decades, research activity on nanomaterials has gained considerable press coverage. The use of nanomaterials has meant that consumer products can be made lighter, stronger, esthetically more pleasing, and less expensive. The significant role of nanomaterials in improving the quality of life is clear, resulting in faster computers, cleaner energy production, target-driven pharmaceuticals, and better construction materials. It is not surprising, therefore, that nanomaterial research has really taken off, spanning across different scientific disciplines from material science to nanotoxicology. A critical part of any nanomaterial research, however, is the need to characterize physicochemical properties of the nanomaterials, which is not a trivial matter. Nanomaterial Characterization: An Introduction is dedicated to understanding the key physicochemical properties and their characterization methods. Each chapter begins by giving an overview of the topic before a case study is presented. The purpose of the case study is to demonstrate how the reader may make use of the background information presented to them and show how this can be translated to solve a nanospecific application scenario. Thus, it will be useful for researchers in helping them design experimental investigations. The book begins with a general overview of the subject, thus giving the reader a solid foundation to nanomaterial characterization. Nanomaterial Characterization: An Introduction features: Nanomaterial synthesis and reference nananomaterials Key physicochemical properties and their measurements including particle size distribution by number, solubility, surface area, surface chemistry, mechanical/tribological properties, and dustiness Scanning tunneling microscopy methods operated under extreme conditions Novel strategy for biological characterization of nanomaterial methods Methods to handle and visualize multidimensional nanomaterial characterization data The book is written in such a way that both students and experts in other fields of science will find the information useful, whether they are in academia, industry, or regulation, or those whose analytical background may be limited.There is also an extensive list of references associated with every chapter to encourage further reading.
The extreme microbiomes are those microorganisms thriving under extreme conditions where no other living being will have any chance to survive. The extreme habitats are those presenting high temperatures (thermophiles), low temperature (psychrophiles), hypersaline environments (halophiles), low and high pH (Acidophiles/alkaliphiles), high pressure (Piezophiles) are distributed worldwide. The extreme habitats have proved to offer a unique reservoir of genetic diversity and biological source of extremophiles. The extremophilic microbial diversity and their biotechnological potential use in agricultural and industrial applications will be a milestone for future needs. Extremophiles and their cell components, therefore, are expected to play an important role in the chemical, food, pharmaceutical, paper and textile industries as well as environmental biotechnology.
Presents novel, nanotechnology-based solutions for urgent environmental engineering problems Clear and concise from beginning to end, this book focuses on the design and application of artificially intelligent nanomaterials, which help in solving many tangible environmental problems?especially water and air pollution. It lays out the design concepts, major chemical principles, and materials considerations of artificially intelligent nanomaterials for environmental engineering, and provides proof-of-concept examples such as improved filtration membranes, nanofibrous air filters, and molecularly imprinted nanomaterials. Artificially Intelligent Nanomaterials: For Environmental Engineering starts by describing the background of environmental nanotechnology, the rise of Artificial Intelligence (AI), and the current status of AI in environmental engineering. It then looks at: intelligently functional materials and responsive mechanisms; designing filtration membranes with responsive gates; switchable wettability materials for controllable oil/water separation; and self-healing materials for environmental applications. The book continues with chapters that examine: emerging nanofibrous air filters for PM2.5 removal; self-propelled nanomotors for environmental applications; molecular imprinting in wastewater treatment; and emerging synergistically multifunctional and all-in-one nanomaterials and nanodevices in advanced environmental applications. -Presents the state-of-the-art in environmental technology and puts forward bold ideas for its advancement -Addresses global challenges, including all important water and air quality which are critical for human health and a sustainable future -Concentrates on nanotechnology-enabled solutions for pollutant removal from water and air Artificially Intelligent Nanomaterials: For Environmental Engineering is an ideal book for undergraduates, graduates, scientists, and professionals in the fields of environmental science, material science, chemistry, and chemistry engineering.
Advances in Smart Nanomaterials and their Applications brings together the latest advances and novel methods in the preparation of smart nanomaterials for cutting-edge applications. The book covers fundamental concepts of nanomaterials, including fabrication methods, processing, application areas, specific applications of smart nanomaterials across a range of areas, such as biomedicine, pharmaceuticals, food science and packaging, sensing, cosmetics and dermatology, gas, oil, energy, wastewater and environment, textiles, agriculture, and forestry sectors. In each case, possible challenges, recent trends, and potential future developments are addressed in detail. The book also discusses various considerations for the utilization of smart nanomaterials, including environmental safety and legal requirements. The book is suitable for graduate students as a textbook and simultaneously be useful for both novices and experienced scientists or researchers, medical biologists, nanobiotechnologists, nanoengineers, agricultural scientists, and general biologists as a reference book as well as inspires some industrialists and policy makers involved in the investigation of smart nanomaterials. - Introduces fundamentals of smart nanomaterials, including theory, fabrication methods, processing and properties - Opens the door to a broad range of multifaceted applications across agriculture, food science, biomedicine, energy and other areas - Considers environmental safety, risk assessment, legal requirements and sustainability issues
As industries strive for greater efficiency and longevity in their metal infrastructure, corrosion remains a persistent and costly adversary. Traditional corrosion inhibitors often fail to provide long-term protection, leading to significant economic losses and environmental harm. Innovations in Nanomaterials-Based Corrosion Inhibitors delves into a thorough exploration of the rapidly evolving field of nanomaterials and their pivotal role in corrosion inhibition. This comprehensive guide offers a transformative solution utilizing the power of nanotechnology to combat corrosion with unparalleled effectiveness. Within the pages of this book lies a wealth of knowledge meticulously curated to address the pressing need for advanced corrosion inhibition strategies. From understanding the fundamental principles of corrosion to exploring the innovative applications of nanomaterials, it equips readers with the tools to revolutionize their approach to metal protection. With a precise analysis of the synthesis, characterization, and practical implementation of diverse nanomaterials, encompassing nanoparticles, nanocomposites, and nanostructured coatings, and a primary focus on safeguarding metal surfaces against corrosion, this book creates the much-needed reference for shaping the future of corrosion inhibitors. Innovations in Nanomaterials-Based Corrosion Inhibitors offers a roadmap to overcoming corrosion challenges and heralding a new era of sustainability and cost-effectiveness. By embracing nanotechnology, industries can enhance the durability of their metal infrastructure while minimizing environmental impact and maximizing economic efficiency.
This book contains 17 papers from the Controlled Processing of Nanoparticle-based Materials and Nanostructured Films; Nanotechnology for Energy, Healthcare, and Industry; and Nanolaminated Ternary Carbides and Nitrides (MAX Phases) symposia held during the 2010 Materials Science and Technology (MS&T'10) meeting, October 17-21, 2010, Houston, Texas. Topics include: Direct Manufacturing; Low Dimension Nanomaterials; Processing and Sintering; Thin Films; Nanolaminated Ternary Carbides and Nitrides (MAX Phases); and Novel Nanomaterial Approaches.
Nanomaterials for Biocatalysis explains the fundamental design concepts and emerging applications of nanoscale biocatalysts, such as bioconversions, bioelectronics, biosensors, biocomputing and therapeutic applications. Nano-biocatalysts refers to the incorporation of enzymes into nanomaterials. These enzyme-enhanced nanocarriers have many advantages, including low mass transfer limitation, high enzyme capacity, better stabilization, and the formation of single-enzyme nanoparticles. Smart nanocontainers have been developed for the smart release of their embedded active substances. These smart releases can be obtained by using smart coatings as their outer nanoshells. In addition, these nanocontainers could protect the enzymes from chemical or metabolic alterations on their delivering pathways towards the target. This is an important reference source for materials scientists and chemical engineers who want to know more about how nanomaterials are being used for biocatalysis applications. - Explains the major fabrication techniques and applications of nanobiocatalysts - Shows how nanobiocatalysts are used in a variety of environmental and biomedical sectors - Assesses the major challenges associated with the widespread manufacture of nanobiocatalysts