Download Free Nanomaterials For Tumor Targeting Theranostics Book in PDF and EPUB Free Download. You can read online Nanomaterials For Tumor Targeting Theranostics and write the review.

"Nanomaterials offer great potential for effective tumor diagnosis and therapy combing diagnostic agents and therapeutic drugs into one platform. In this book, the most recent progress of main nanomaterials and their applications in tumor targeting theranostics is presented. It summarizes the recent advances of current principal nanomaterials in tumor theranostics, including magnetic nanomaterials, quantum dots, mesoporous silica nanoparticles, gold nanomaterials, polymeric nanosystem, carbon nanomaterials, lipopolyplex nanoparticles, microbubbles, upconversion nanomaterials and dendrimers. It will enable readers to get a more realistic understanding of both the advantages and limitations of nanomaterials for potential tumor targeting theranosis. The publication of this book will accelerate the spread of ideas that are currently trickling through the scientific literature. Also a greater understanding of the potential and challenge of nanomaterials for tumor targeting theranostics is highly anticipated for practical clinical use."--Provided by publisher.
Handbook of Nanomaterials for Cancer Theranostics focuses on recent developments in advanced theranostic nanomedicines from a chemical and biological perspective where the advantages of theranostics are achieved by combining multiple components. The authors explore the pros and cons of theranostic nanomaterials developed in cancer research in the last 15 years, with the different strategies compared and scrutinized. In addition, the book explores how nanomaterials may overcome the regulatory hurdles facing theranostic nanomedicines. This is an important research reference for postgraduates and researchers in nanomedicine and cancer research who want to learn more on how nanomaterials can help create more effective cancer treatments. Highlights the development of smart theranostic nanomaterials to tackle biomedical problems in cancer therapy and diagnostics Explores the regulatory hurdles facing theranostic nanomedicine Discusses how the use of nanomaterials can help create more effective cancer treatments
Design of Nanostructures for Theranostics Applications focuses on the theranostics applications of nanostructures. In particular, multifunctional nanoparticles for diagnostics and treatment of different diseases, including those relating to the blood-brain barrier, are discussed in detail. Chapters explore different type of nanostructures, covering design, fabrication, functionalization and optimization, helping readers obtain the desired properties. Written by a diverse range of international academics, this book is a valuable reference resource for those working in both nanoscience and the pharmaceutical industry. Explores how the design of a range of nanomaterials make them effective theranostic agents, including multifunctional core-shell nanostructures, mesoporous silica nanoparticles, and quantum dots Shows how nanomaterials are used effectively for a range of diseases, including breast cancer, prostate cancer and neurological disorders Assesses the pros and cons of using different nanomaterials for different types of treatment
Multifunctional Theranostic Nanomedicines in Cancer focuses on new trends, applications, and the significance of novel multifunctional nanotheranostics in cancer imaging for diagnosis and treatment. Cancer nanotechnology offers new opportunities for cancer diagnosis and treatment. Multifunctional nanoparticles harboring various functions—including targeting, imaging, and therapy—have been intensively studied with the goal of overcoming the limitations of conventional cancer diagnosis and therapy. Thus theranostic nanomedicines have emerged in recent years to provide an efficient and safer alternative in cancer management. This book covers polymer-based therapies, lipid-based therapies, inorganic particle-based therapies, photo-related therapies, radiotherapies, chemotherapies, and surgeries. Multifunctional Theranostic Nanomedicines in Cancer offers an indispensable guide for researchers in academia, industry, and clinical settings; it is also ideal for postgraduate students; and formulation scientists working on cancer. Provides a comprehensive resource of recent scientific progress and novel applications of theranostic nanomedicines Discusses treatment options from a pharmaceutical sciences perspective Includes translational science and targeted CNS cancer treatment
The cancer research world is looking forward to bionanotechnology to find the best solutions for a complete cure from cancer, which is not possible with the current established treatment methods. The past decade of research on nano imaging and drug delivery in cancer has witnessed many interesting papers and reviews, but there has not been a concise resource that discusses all fields related to nano cancer research in diagnosis and drug delivery. This book fills this gap and presents the latest bionano research in cancer, focusing on nanodiagnostics and nanotherapy. The book is organized into two sections. The section on nanodiagnostics focuses on topics such as diagnostic methods in cancer-related therapy and use of radiolabeled nanoparticles, magnetic nanoparticles, acoustically reflective nanoparticles, X-ray computed tomography, and optical nanoprobes for diagnosis. The section on nanotherapy focuses on nanomaterials in chemotherapy, magnetic nanoparticles for hyperthermia against cancer, phototherapy, nanotechnology-mediated radiation therapy, nanoparticle-mediated small-RNA deliveries for molecular therapies, and theranostics. The book will serve as the gateway to enter the beautiful and elegant field of bionanoscience, which is considered the last hope for the fight against cancer and will be a highly useful resource for the students, researchers, teachers, and curious readers working in this field or related fields.
This book summarizes the latest advances in nanomaterials and techniques in the field of tumor-targeted diagnosis and therapy. It provides valuable information for beginners and senior researchers, and stimulates new research directions by offering novel and provocative insights into the properties and technical principles of nanomaterials. The book systemically discusses the challenges in tumor treatment, current tumor-targeted strategies, drug-release strategies, diagnosis and therapeutic patterns, and also explores newly developed multifunctional nanomaterials and related systems.
Organic Nanomaterials for Cancer Phototheranostics highlights the use of biocompatible building blocks to make nanomaterials that can aid in medical treatment through better diagnostic and antitumor efficacy. It synthesizes the current literature on synthetic strategies and designs based on peptides, proteins, polymers, lipids, and their conjugates, as well as composites and complexes with metals and inorganic components used to form the nanomaterials. Mechanistic approaches, clinical problems, and therapeutic and diagnostics mechanisms are covered in each chapter. Cellular interactions and uptake, pharmacokinetics, biodistribution, drug delivery efficiency, and safety concerns of these types of nanomaterials are discussed, as well. Other topics looked at include photostability, clearance, metabolism, in-vitro and in-vivo mechanisms, therapeutic efficacy, imaging, and toxicology. Outlines fabrication and design strategies of peptides, proteins, polymers, lipids, composites, and complexes with metals and inorganic components Discusses the limitations and challenges of organic nanomaterials in clinical use, including their mechanisms of penetration into cancer cells and tissue, photostability, clearance, and metabolism Covers clinical problems and therapeutic and diagnostics mechanisms
Nanotechnology is an interdisciplinary research field that integrates chemistry, engineering, biology, and medicine. Nanomaterials offer tremendous opportunity as well as challenges for researchers. Of course, cancer is one of the world's most common health problems, responsible for many deaths. Exploring efficient anticancer drugs could revolutionize treatment options and help manage cancer mortality. Nanomedicine plays a significant role in developing alternative and more effective treatment strategies for cancer theranostics. This book mainly focuses on the emerging trends using nanomaterials and nanocomposites as alternative anticancer material’s. The book is divided into three main topic areas: how to overcome existing traditional approaches to combat cancer, applying multiple mechanisms to target the cancer cells, and how nanomaterials can be used as effective carriers. The contents highlight recent advances in interdisciplinary research on processing, morphology, structure, and properties of nanostructured materials and their applications to combat cancer.Cancer Nanotheranostics is comprehensive in that it discusses all aspects of cancer nanotechnology. Because of the vast amount of information, it was decided to split this material into two volumes. In the first volume of Cancer Nanotheranostics, we discuss the role of different nanomaterials for cancer therapy, including lipid-based nanomaterials, protein and peptide-based nanomaterials, polymer-based nanomaterials, metal-organic nanomaterials, porphyrin-based nanomaterials, metal-based nanomaterials, silica-based nanomaterials, exosome-based nanomaterials and nano-antibodies. In the second volume, we discuss the nano-based diagnosis of cancer, nano-oncology for clinical applications, nano-immunotherapy, nano-based photothermal cancer therapy, nano-erythrosomes for cancer drug delivery, regulatory perspectives of nanomaterials, limitations of cancer nanotheranostics, the safety of nano-biomaterials for cancer nanotheranostics, multifunctional nanomaterials for targeting cancer nanotheranostics, and the role of artificial intelligence in cancer nanotheranostics.
This first comprehensive overview on nanotechnological approaches to cancer therapy brings together therapeutic oncology and nanotechnology, showing the various strategic approaches to selectively eliminating cancerous cells without damaging the surrounding healthy tissue. The strategies covered include magnetic, optical, microwave and neutron absorption techniques, nanocapsules for active agents, nanoparticles as active agents, and active and passive targeting, while also dealing with fundamental aspects of how nanoparticles cross biological barriers. A valuable single source gathering the many articles published in specialized journals often difficult to locate for members of the other disciplines involved.
Nano-Pharmacokinetics and Theranostics: Advancing Cancer Therapy addresses from a comprehensive and multidisciplinary approach the translational aspects and clinical perspectives of nano-pharmacokinetics using cancer as a model disease. Nano-pharmacokinetics is emerging as an important sub discipline of nanoscience and medical sciences because of the increasing safety issues of nanosystems on living organisms. This book reports the dynamics of nanosystems in living organisms for better understanding of nanotoxicity, pharmacology, biochemistry, physiology and medicine perspectives. It further examines current progress of state-of-the art pharmacokinetics mechanisms, which will be of great help to develop more clinical-oriented nanosystems with a wide safety margin. The book is divided into three sections: the first section focuses on the concept of pharmacokinetics with state-of-the-art Nano-Pharmacokinetics (NPK). The second section looks at the engineering of nanoparticles and pharmacokinetics clinical development. The final section focuses on Nano-Pharmacokinetics and Theranostics, elaborating the basic question of how pharmacokinetics of nanomaterials relate to their end applications such as cancer therapy. Nano-Pharmacokinetics and Theranostics: Advancing Cancer Therapy will be useful to researchers in the field of nanoparticle based targeted drug delivery including pharmaceutical scientists, material scientists, chemists, nanotechnologists, biomedical scientists, and clinicians. Includes contributions from highly qualified scientists, regulatory entities, enterprises and medical practitioners to explain the long and inherently multidisciplinary pathway of nano-pharmacokinetics Describes assessment methods of nano-pharmacokinetics Examines the interface between nanomedicine and pharmacokinetics to diagnose and treat cancer