Download Free Nanomaterials Based Charge Trapping Memory Devices Book in PDF and EPUB Free Download. You can read online Nanomaterials Based Charge Trapping Memory Devices and write the review.

Rising consumer demand for low power consumption electronics has generated a need for scalable and reliable memory devices with low power consumption. At present, scaling memory devices and lowering their power consumption is becoming more difficult due to unresolved challenges, such as short channel effect, Drain Induced Barrier Lowering (DIBL), and sub-surface punch-through effect, all of which cause high leakage currents. As a result, the introduction of different memory architectures or materials is crucial. Nanomaterials-based Charge Trapping Memory Devices provides a detailed explanation of memory device operation and an in-depth analysis of the requirements of future scalable and low powered memory devices in terms of new materials properties. The book presents techniques to fabricate nanomaterials with the desired properties. Finally, the book highlights the effect of incorporating such nanomaterials in memory devices. This book is an important reference for materials scientists and engineers, who are looking to develop low-powered solutions to meet the growing demand for consumer electronic products and devices. - Explores in depth memory device operation, requirements and challenges - Presents fabrication methods and characterization results of new nanomaterials using techniques, including laser ablation of nanoparticles, ALD growth of nano-islands, and agglomeration-based technique of nanoparticles - Demonstrates how nanomaterials affect the performance of memory devices
Discusses the sustainability of nanomaterials in tribology, economic aspects of nanomaterials, mechanisms, and mathematical models in detail. Highlights the importance of tribology of green lubricants, green additives, and lightweight materials. Covers special topics such as orthopedic implants, dental tribology, biocompatible nanomaterials related to the role of nanomaterials in bio tribology. Presents interdisciplinary aspects such as sustainability, tribology of biological systems, and chemical aspects of nanomaterials. Explains research advancement and recent trends such as green additives, nano greases, nanocomposite tribology, and the concept of green tribology with respect to nanotechnology.
This book describes the technology of charge-trapping non-volatile memories and their uses. The authors explain the device physics of each device architecture and provide a concrete description of the materials involved and the fundamental properties of the technology. Modern material properties, used as charge-trapping layers, for new applications are introduced. Provides a comprehensive overview of the technology for charge-trapping non-volatile memories; Details new architectures and current modeling concepts for non-volatile memory devices; Focuses on conduction through multi-layer gate dielectrics stacks.
Handbook of Carbon-Based Nanomaterials provides a comprehensive overview of carbon-based nanomaterials and recent advances in these specialized materials. This book opens with a brief introduction to carbon, including the different forms of carbon and their range of uses. Each chapter systematically covers a different type of carbon-based nanomaterial, including its individual characteristics, synthesis techniques and applications in industry, biomedicine and research. This book offers a broad handbook on carbon-based nanomaterials, detailing the materials aspects, applications and recent advances of this expansive topic. With its global team of contributing authors, Handbook of Carbon-Based Nanomaterials collates specific technical expertise from around the world, for each type of carbon-based nanomaterial. Due to the broad nature of the coverage, this book will be useful to an interdisciplinary readership, including researchers in academia and industry in the fields of materials science, engineering, chemistry, energy and biomedical engineering. - Covers a range of carbon-based nanomaterials, including graphene, fullerenes and much more - Describes key properties, synthesis techniques and characterization of each carbon-based nanomaterial - Discusses a range of applications of carbon-based nanomaterials, from biomedicine to energy applications
The complexities of nanotechnology often hamper the discoveries of nanomaterials and their wide range of applications. Researchers face the challenge of keeping up with the rapid development of new materials and figuring out how they can be most efficiently and safely used. As scientists continue to explore the unique properties of nanoparticles, nanofibers, and other nanostructures, there is a growing need for a comprehensive resource to guide them through this intricate landscape. Discovery, Disruption, and Future Implications of Nanomaterials is a book that provides a curated collection of cutting-edge research and insights into the strategic importance of nanomaterials. It bridges the gap between theory and practice, covering fundamental principles to advanced applications in areas such as biomedicine, electronics, energy, and more. The book focuses on carbon-based materials for water treatment, gene/drug delivery, and nanotechnology's role in various fields, equipping readers with the knowledge to navigate the complexities of nanomaterial development and implementation.
This book covers various facets of nanomaterials and their applications including low-dimensional materials along with discussions on in vitro cell imaging, bioanalyses, UV laser applications of scheelite-type nanomaterials, and nanosized cyanobridged metal-organic frameworks, including high spin transition metal ions. It explains transition metal dichalcogenides and magnetic tunnel junction devices as an alternative to complementary metal-oxide semiconductors. One of the main aims of this book is to grow interest in the atomistic simulation process and characterization of these nanoscale devices. Details the recent advances in the application of nanomaterials for nanoelectronics devices, sensors, and memories Describes the first-principles approach to ultrasensitive electrically doped biosensors Discusses the application of nanomaterials in spintronic devices, specifically magnetic tunnel junction devices with new architectures Covers nanomaterials in water purification and conducting polymer nanocomposites in electrochemical supercapacitors Presents the theoretical background of next-generation MRI contrast agents with nanosized cyanobridged metal-organic frameworks including high spin transition metal ions This book is aimed at researchers and graduate students of materials engineering and nanoelectronics.
Offering perspective on both the scientific and engineering aspects of 2D semiconductors, Ultrathin Two-Dimensional Semiconductors for Novel Electronic Applications discusses how to successfully engineer 2D materials for practical applications. It also covers several novel topics regarding 2D semiconductors which have not yet been discussed in any other publications. Features: Provides comprehensive information and data about wafer-scale deposition of 2D semiconductors, ranging from scientific discussions up to the planning of experiments and reliability testing of the fabricated samples Precisely discusses wafer-scale ALD and CVD of 2D semiconductors and investigates various aspects of deposition techniques Covers the new group of 2D materials synthesized from surface oxide of liquid metals and also explains the device fabrication and post-treatment of these 2D nanostructures Addresses a wide range of scientific and practical applications of 2D semiconductors and electronic and optoelectronic devices based on these nanostructures Offers novel coverage of 2D heterostructures and heterointerfaces and provides practical information about fabrication and application of these heterostructures Introduces the latest advancement in fabrication of novel memristors, artificial synapses and sensorimotor devices based on 2D semiconductors This work offers practical information valuable for engineering applications that will appeal to researchers, academics, and scientists working with and interested in developing an array of semiconductor electronic devices.
In this book anisotropic one-dimensional and two-dimensional nanoscale building blocks and their assembly into fascinating and qualitatively new functional structures embracing both hard and soft components are explained. Contributions from leading experts regarding important aspects like synthesis, assembly, properties and applications of the above materials are compiled into a reference book. The anisotropy, i.e. the direction-dependent physical properties, of materials is fascinating and elegant and has sparked the quest for anisotropic materials with useful properties. With such a curiosity, material scientists have ventured into the realm of nanometer length scale and have explored the anisotropic nanoscale building blocks such as metallic and nonmetallic particles as well as organic molecular aggregates. It turns out that the anisotropic nanoscale building blocks, in addition to direction-dependent properties, exhibit dimension and morphology dependence of physical properties. Moreover, ordered arrays of anisotropic nanoscale building blocks furnish novel properties into the resulting system which would be entirely different from the properties of individual ones. Undoubtedly, these promising properties have qualified them as enabling building blocks of 21st century materials science, nanoscience and nanotechnology. Readers will find this book professionally valuable and intellectually stimulating in the rapidly emerging area of anisotropic nanomaterials. Quan Li, Ph.D., is Director of the Organic Synthesis and Advanced Materials Laboratory at the Liquid Crystal Institute of Kent State University, where he is also Adjunct Professor in the Chemical Physics Interdisciplinary Program. He has directed research projects funded by US Air Force Research Laboratory (AFRL), US Air Force Office of Scientific Research (AFSOR), US Army Research Office (ARO), US Department of Defense Multidisciplinary University Research Initiative (DoD MURI), US National Science Foundation (NSF), US Department of Energy (DOE), US National Aeronautics and Space Administration (NASA), Ohio Third Frontier, and Samsung Electronics, among others.
Many bottom-up and top-down techniques for nanomaterial and nanostructure generation have enabled the development of applications in nanoelectronics and nanophotonics. Handbook of Nanophysics: Nanoelectronics and Nanophotonics explores important recent applications of nanophysics in the areas of electronics and photonics. Each peer-reviewed c
Handbook of Nanomaterials: Electronics, Information Technology, Energy, Transportation, and Consumer Products offers a comprehensive resource that introduces the role of nanotechnology and nanomaterials in a broad range of areas, covering fundamentals, methods, and applications.In this volume, the initial chapters introduce the core concepts of nanotechnology, and synthesis methods and characterization techniques for nanomaterials. This is followed by dedicated sections focusing on key application areas across electronics, information technology, energy, transportation, and consumer products. In each chapter, detailed but concise information is provided on a specific application, covering methods and latest advances.This book is of interest to researchers and advanced students approaching nanotechnology from a range of disciplines, including materials science and engineering, chemistry, chemical engineering, electronics, energy, biomedicine, environmental science, food science, and agriculture, as well as scientists, engineers, and R&D professionals with an interest in the use of nanomaterials across a range of industries. - Introduces the reader to key applications of nanomaterials - Provides broad, systematic, concise coverage, supporting readers from a range of disciplines - Covers applications across electronics, information technology, energy, transportation, and consumer products