Download Free Nanoimprint Technology Book in PDF and EPUB Free Download. You can read online Nanoimprint Technology and write the review.

Nanoscale pattern transfer technology using molds is a rapidly advancing area and one that has seen much recent attention due to its potential for use in nanotechnology industries and applications. However, because of these rapid advances, it can be difficult to keep up with the technological trends and the latest cutting-edge methods. In order to fully understand these pioneering technologies, a comprehensive understanding of the basic science and an overview of the techniques are required. Nanoimprint Technology: Nanotransfer for Thermoplastic and Photocurable Polymers covers the latest nanotransfer science based on polymer behaviour. Polymer fluid dynamics are described in detail, and injection moulding, nanoimprint lithography and micro contact printing are also discussed. Cutting-edge nanotransfer technologies and applications are also considered and future trends in industry are examined. Key features: • Covers the fundamentals of nanoimprint technology • Presents cutting-edge techniques and applications • Provides industrial examples and describes the mold fabrication process • Considers nanotransfer of thermoplastics by simulation • Describes the design and evaluation of UV curable polymer Nanoimprint Technology: Nanotransfer for Thermoplastic and Photocurable Polymers is a comprehensive reference for industry engineers as well as graduate and undergraduate students, and is a useful source of information for anyone looking to improve their understanding of nanotransfer mechanisms and methods.
Lithography, the fundamental fabrication process of semiconductor devices, has been playing a critical role in micro-nanofabrication technologies and manufacturing of Integrated Circuits (IC). Traditional optical lithography including contact and project photolithography has contributed significantly to the semiconductor device advancements. Currently, maintaining the rapid pace of half-pitch reduction requires overcoming the challenge of improving and extending the incumbent optical projection lithography technology while simultaneously developing alternative, next generation lithography (NGL) technologies to be used when optical projection lithography is no longer more economical than the alternatives. Furthermore, NIL is also one of the most promising low-cost, high-throughput technologies for manufacturing nanostructures as this highly technical book will give new insight to.
Nanoimprint Lithography: An enabling process for nanofabrication presents a comprehensive description of nanotechnology that is one of the most promising low-cost, high-throughput technologies for manufacturing nanostructures, and an emerging lithography candidates for 22, 16 and 11 nm nodes. It provides the exciting, multidisciplinary field, offering a wide range of topics covering: principles, process, material and application. This book would be of specific interest for researchers and graduate students in the field of nanoscience, nanotechnology and nanofabrication, material, physical, chemical, electric engineering and biology. Dr. Weimin Zhou is an associate professor at Shanghai Nanotechnology Promotion Center, China.
This book starts with an overview and introduction on the trends in nanofabrication and nanoimprint technology, followed by a detailed discussion on the design, fabrication, and evaluation of nanoimprint biosensors. The proto-model systems and some application examples of this sensor are also included in the chapters. The book will appeal to anyone
Nanoimprinting has grown rapidly since it was proposed in 1995 by Prof. Chou. Now machines, resins, and molds for nanoimprinting are commercially available worldwide. The application fields of nanoimprinting are expanding to not only electronics but also optics, biology, and energy because nanoimprinting is a simple and convenient method for nanofabrication, and some devices are now being mass-produced. In the near future, the application of nanoimprinting in display and semiconductor fields is expected. This book explains the fundamentals of nanoimprinting in terms of materials, processes, and machines. It also describes the applications of nanoimprinting in optics, biology, energy, and electronics. In addition, it includes as many practical examples of nanoimprinting as possible. The fundamentals will help advanced undergraduate and graduate students understand nanoimprinting. The examples will be useful for both researchers working in nanoimprinting for the first time and engineers involved in research and development of various devices using nanostructures.
This book is an overview of replication technology for micro- and nanostructures, focusing on the techniques and technology of hot embossing, a scaleable and multi-purpose technology for the manufacture of devices such as BioMEMS and microfluidic devices which are expected to revolutionize a wide range of medical and industrial processes over the coming decade.The hot embossing process for replicating microstructures was developed by the Forschungszentrum Karlsruhe (Karlsruhe Institute of Technology) where the author is head of the Nanoreplication Group. Worgull fills a gap in existing information by fully detailing the technology and techniques of hot embossing. He also covers nanoimprinting, a process related to hot embossing, with examples of actual research topics and new applications in nanoreplication. A practical and theoretical guide to selecting the materials, machinery and processes involved in microreplication using hot embossing techniques Compares different replication processes such as: micro injection molding, micro thermoforming, micro hot embossing, and nanoimprinting Details commercially available hot embossing machinery and components like tools and mold inserts
This book focuses on a research field that is rapidly emerging as one of the most promising ones for the global optics and photonics community: the “lab-on-fiber” technology. Inspired by the well-established "lab on-a-chip" concept, this new technology essentially envisages novel and highly functionalized devices completely integrated into a single optical fiber for both communication and sensing applications. Based on the R&D experience of some of the world's leading authorities in the fields of optics, photonics, nanotechnology, and material science, this book provides a broad and accurate description of the main developments and achievements in the lab-on-fiber technology roadmap, also highlighting the new perspectives and challenges to be faced. This book is essential for scientists interested in the cutting-edge fiber optic technology, but also for graduate students.
Volume is indexed by Thomson Reuters CPCI-S (WoS). This book brings together over 153 peer-reviewed papers, grouped into 6 chapters: Micro-/Nano-Fabrication and Measurement Technologies, Micro-Sensors and Actuators, Microfluidic Devices and Systems, MEMS/NENS and Applications, Nano-Material Research / Nanotubes / Nanowire Devices, Micropower Technology, Theories in Micro-/Nano-Technologies. Most of the papers are authored by Chinese researchers, and the volume thus offers a good overview of the research on MEMS and nano-technology being conducted in China. The work will be of great interest to researchers, graduate students and engineers who are working in the fields of MEMS and nano-technology.
There are fundamental and technological limits of conventional microfabrication and microelectronics. Scaling down conventional devices and attempts to develop novel topologies and architectures will soon be ineffective or unachievable at the device and system levels to ensure desired performance. Forward-looking experts continue to search for new paradigms to carry the field beyond the age of microelectronics, and molecular electronics is one of the most promising candidates. The Nano and Molecular Electronics Handbook surveys the current state of this exciting, emerging field and looks toward future developments and opportunities. Molecular and Nano Electronics Explained Explore the fundamentals of device physics, synthesis, and design of molecular processing platforms and molecular integrated circuits within three-dimensional topologies, organizations, and architectures as well as bottom-up fabrication utilizing quantum effects and unique phenomena. Technology in Progress Stay current with the latest results and practical solutions realized for nanoscale and molecular electronics as well as biomolecular electronics and memories. Learn design concepts, device-level modeling, simulation methods, and fabrication technologies used for today's applications and beyond. Reports from the Front Lines of Research Expert innovators discuss the results of cutting-edge research and provide informed and insightful commentary on where this new paradigm will lead. The Nano and Molecular Electronics Handbook ranks among the most complete and authoritative guides to the past, present, and future of this revolutionary area of theory and technology.