Download Free Nanogrids Microgrids And The Internet Of Things Iot Towards The Digital Energy Network Book in PDF and EPUB Free Download. You can read online Nanogrids Microgrids And The Internet Of Things Iot Towards The Digital Energy Network and write the review.

Driven by new regulations, new market structures, and new energy resources, the smart grid has been the trigger for profound changes in the way that electricity is generated, distributed, managed, and consumed. The smart grid has raised the traditional power grid by using a two-way electricity and information flow to create an advanced, automated power supply network. However, these pioneering smart grid technologies must grow to adapt to the demands of the current digital society. In today’s digital landscape, we can access feasible data and knowledge that were merely inconceivable. This Special Issue aims to address the landscape in which smart grids are progressing, due to the advent of pervasive technologies like the Internet of Things (IoT). It will be the advanced exploitation of the massive amounts of data generated from (low-cost) IoT sensors that will become the main driver to evolve the concept of the smart grid, currently focused on infrastructure, towards the digital energy network paradigm, focused on service. Furthermore, collective intelligence will improve the processes of decision making and empower citizens. Original manuscripts focusing on state-of-the-art IoT networking and communications, M2M communications, cyberphysical system architectures, big data analytics or cloud computing applied to digital energy platforms, including design methodologies and practical implementation aspects, are welcome.
Driven by new regulations, new market structures, and new energy resources, the smart grid has been the trigger for profound changes in the way that electricity is generated, distributed, managed, and consumed. The smart grid has raised the traditional power grid by using a two-way electricity and information flow to create an advanced, automated power supply network. However, these pioneering smart grid technologies must grow to adapt to the demands of the current digital society. In today's digital landscape, we can access feasible data and knowledge that were merely inconceivable. This Special Issue aims to address the landscape in which smart grids are progressing, due to the advent of pervasive technologies like the Internet of Things (IoT). It will be the advanced exploitation of the massive amounts of data generated from (low-cost) IoT sensors that will become the main driver to evolve the concept of the smart grid, currently focused on infrastructure, towards the digital energy network paradigm, focused on service. Furthermore, collective intelligence will improve the processes of decision making and empower citizens. Original manuscripts focusing on state-of-the-art IoT networking and communications, M2M communications, cyberphysical system architectures, big data analytics or cloud computing applied to digital energy platforms, including design methodologies and practical implementation aspects, are welcome.
This book provides an overview of the current Internet of Things (IoT) landscape, ranging from the research, innovation and development priorities to enabling technologies in a global context. A successful deployment of IoT technologies requires integration on all layers, be it cognitive and semantic aspects, middleware components, services, edge devices/machines and infrastructures. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC - Internet of Things European Research Cluster from research to technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster and the IoT European Platform Initiative (IoT-EPI) and presents global views and state of the art results on the challenges facing the research, innovation, development and deployment of IoT in the next years. The IoT is bridging the physical world with virtual world and requires sound information processing capabilities for the "digital shadows" of these real things. The research and innovation in nanoelectronics, semiconductor, sensors/actuators, communication, analytics technologies, cyber-physical systems, software, swarm intelligent and deep learning systems are essential for the successful deployment of IoT applications. The emergence of IoT platforms with multiple functionalities enables rapid development and lower costs by offering standardised components that can be shared across multiple solutions in many industry verticals. The IoT applications will gradually move from vertical, single purpose solutions to multi-purpose and collaborative applications interacting across industry verticals, organisations and people, being one of the essential paradigms of the digital economy. Many of those applications still have to be identified and involvement of end-users including the creative sector in this innovation is crucial. The IoT applications and deployments as integrated building blocks of the new digital economy are part of the accompanying IoT policy framework to address issues of horizontal nature and common interest (i.e. privacy, end-to-end security, user acceptance, societal, ethical aspects and legal issues) for providing trusted IoT solutions in a coordinated and consolidated manner across the IoT activities and pilots. In this, context IoT ecosystems offer solutions beyond a platform and solve important technical challenges in the different verticals and across verticals. These IoT technology ecosystems are instrumental for the deployment of large pilots and can easily be connected to or build upon the core IoT solutions for different applications in order to expand the system of use and allow new and even unanticipated IoT end uses. Technical topics discussed in the book include: IntroductionDigitising industry and IoT as key enabler in the new era of Digital EconomyIoT Strategic Research and Innovation Agenda IoT in the digital industrial context: Digital Single MarketIntegration of heterogeneous systems and bridging the virtual, digital and physical worldsFederated IoT platforms and interoperabilityEvolution from intelligent devices to connected systems of systems by adding new layers of cognitive behaviour, artificial intelligence and user interfaces. Innovation through IoT ecosystemsTrust-based IoT end-to-end security, privacy framework User acceptance, societal, ethical aspects and legal issuesInternet of Things Applications
Cognitive Hyperconnected Digital Transformation provides an overview of the current Internet of Things (IoT) landscape, ranging from research, innovation and development priorities to enabling technologies in a global context. It is intended as a standalone book in a series that covers the Internet of Things activities of the IERC-Internet of Things European Research Cluster, including both research and technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT-EPI) and the IoT European Large-Scale Pilots Programme, presenting global views and state-of-the-art results regarding the challenges facing IoT research, innovation, development and deployment in the next years. Hyperconnected environments integrating industrial/business/consumer IoT technologies and applications require new IoT open systems architectures integrated with network architecture (a knowledge-centric network for IoT), IoT system design and open, horizontal and interoperable platforms managing things that are digital, automated and connected and that function in real-time with remote access and control based on Internet-enabled tools. The IoT is bridging the physical world with the virtual world by combining augmented reality (AR), virtual reality (VR), machine learning and artificial intelligence (AI) to support the physical-digital integrations in the Internet of mobile things based on sensors/actuators, communication, analytics technologies, cyber-physical systems, software, cognitive systems and IoT platforms with multiple functionalities. These IoT systems have the potential to understand, learn, predict, adapt and operate autonomously. They can change future behaviour, while the combination of extensive parallel processing power, advanced algorithms and data sets feed the cognitive algorithms that allow the IoT systems to develop new services and propose new solutions. IoT technologies are moving into the industrial space and enhancing traditional industrial platforms with solutions that break free of device-, operating system- and protocol-dependency. Secure edge computing solutions replace local networks, web services replace software, and devices with networked programmable logic controllers (NPLCs) based on Internet protocols replace devices that use proprietary protocols. Information captured by edge devices on the factory floor is secure and accessible from any location in real time, opening the communication gateway both vertically (connecting machines across the factory and enabling the instant availability of data to stakeholders within operational silos) and horizontally (with one framework for the entire supply chain, across departments, business units, global factory locations and other markets). End-to-end security and privacy solutions in IoT space require agile, context-aware and scalable components with mechanisms that are both fluid and adaptive. The convergence of IT (information technology) and OT (operational technology) makes security and privacy by default a new important element where security is addressed at the architecture level, across applications and domains, using multi-layered distributed security measures. Blockchain is transforming industry operating models by adding trust to untrusted environments, providing distributed security mechanisms and transparent access to the information in the chain. Digital technology platforms are evolving, with IoT platforms integrating complex information systems, customer experience, analytics and intelligence to enable new capabilities and business models for digital business.
Blockchain-Based Smart Grids presents emerging applications of blockchain in electrical system and looks to future developments in the use of blockchain technology in the energy market. Rapid growth of renewable energy resources in power systems and significant developments in the telecommunication systems has resulted in new market designs being employed to cover unpredictable and distributed generation of electricity. This book considers the marriage of blockchain and grid modernization, and discusses the transaction shifts in smart grids, from centralized to peer-to-peer structures. In addition, it addresses the effective application of these structures to speed up processes, resulting in more flexible electricity systems. Aimed at moving towards blockchain-based smart grids with renewable applications, this book is useful to researchers and practitioners in all sectors of smart grids, including renewable energy providers, manufacturers and professionals involved in electricity generation from renewable sources, grid modernization and smart grid applications.
Microgrids are poised to play a big role in the electricity ecosystem of the future—with decarbonization, digitalization, decentralization, and non-wires solutions being key attributes. This handbook serves as a guide to evaluate the feasibility of microgrid systems in enhancing power supply quality and connectivity. It includes information about on-grid microgrids for urban and industrial applications, prevailing business models, and emerging trends that could shape the future of this sector.
A microgrid is a small network of electricity users with a local source of supply that is usually attached to a larger grid but can function independently. The interconnection of small scale generating units, such as PV and wind turbines, and energy storage systems, such as batteries, to a low voltage distribution grid involves three major challenges: variability, scalability, and stability. It must keep delivering reliable and stable power also when changing, or repairing, any component, or under varying wind and solar conditions. It also must be able to accept additional units, i.e. be scalable. This reference discusses these three challenges facing engineers and researchers in the field of power systems, covering topics such as demand side energy management, transactive energy, optimizing and sizing of microgrid components. Case studies and results provide illustrative examples in each chapter.
Energy efficiency issues for green internet of things (IoT) are investigated in this book, from the perspectives of device-to-device (D2D) communications, machine-to-machine (M2M) communications, and air-ground networks. Specifically, critical green IoT techniques from D2D communications in the cellular network to M2M communications in industrial IoT (IIoT), (from single physical-layer optimization to cross-layer optimization, and from single-layer ground networks to stereoscopic air-ground networks) are discussed in both theoretical problem formulation and simulation result analysis in this book. Internet of Things (IoT) offers a platform that enables sensors and devices to connect seamlessly in an intelligent environment, thus providing intelligence services including monitoring systems, industrial automation, and ultimately smart cities. However, the huge potentials of IoT are constrained by high energy consumption, limited battery capacity, and the slow progress of battery technology. The high energy consumption of IoT device causes communication interruption, information loss, and short network lifetime. Moreover, once deployed, the batteries inside IoT devices cannot be replaced in time. Therefore, energy efficient resource allocation is urgent to be investigated to improve the energy efficiency of IoT, facilitate green IoT, and extend the network lifetime. This book provides readers with a comprehensive overview of the state-of-the-art key technologies, frameworks, related optimization algorithms, and corresponding integrated designs on green IoT. It also presents an easy-to-understand style in a professional manner, making the book suitable for a wider range of readers from students to professionals interested in the green IoT.
Americans' safety, productivity, comfort, and convenience depend on the reliable supply of electric power. The electric power system is a complex "cyber-physical" system composed of a network of millions of components spread out across the continent. These components are owned, operated, and regulated by thousands of different entities. Power system operators work hard to assure safe and reliable service, but large outages occasionally happen. Given the nature of the system, there is simply no way that outages can be completely avoided, no matter how much time and money is devoted to such an effort. The system's reliability and resilience can be improved but never made perfect. Thus, system owners, operators, and regulators must prioritize their investments based on potential benefits. Enhancing the Resilience of the Nation's Electricity System focuses on identifying, developing, and implementing strategies to increase the power system's resilience in the face of events that can cause large-area, long-duration outages: blackouts that extend over multiple service areas and last several days or longer. Resilience is not just about lessening the likelihood that these outages will occur. It is also about limiting the scope and impact of outages when they do occur, restoring power rapidly afterwards, and learning from these experiences to better deal with events in the future.
Cognitive Hyperconnected Digital Transformation provides an overview of the current Internet of Things (IoT) landscape, ranging from research, innovation and development priorities to enabling technologies in a global context. It is intended as a standalone book in a series that covers the Internet of Things activities of the IERC-Internet of Things European Research Cluster, including both research and technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT-EPI) and the IoT European Large-Scale Pilots Programme, presenting global views and state-of-the-art results regarding the challenges facing IoT research, innovation, development and deployment in the next years. Hyperconnected environments integrating industrial/business/consumer IoT technologies and applications require new IoT open systems architectures integrated with network architecture (a knowledge-centric network for IoT), IoT system design and open, horizontal and interoperable platforms managing things that are digital, automated and connected and that function in real-time with remote access and control based on Internet-enabled tools. The IoT is bridging the physical world with the virtual world by combining augmented reality (AR), virtual reality (VR), machine learning and artificial intelligence (AI) to support the physical-digital integrations in the Internet of mobile things based on sensors/actuators, communication, analytics technologies, cyber-physical systems, software, cognitive systems and IoT platforms with multiple functionalities. These IoT systems have the potential to understand, learn, predict, adapt and operate autonomously. They can change future behaviour, while the combination of extensive parallel processing power, advanced algorithms and data sets feed the cognitive algorithms that allow the IoT systems to develop new services and propose new solutions. IoT technologies are moving into the industrial space and enhancing traditional industrial platforms with solutions that break free of device-, operating system- and protocol-dependency. Secure edge computing solutions replace local networks, web services replace software, and devices with networked programmable logic controllers (NPLCs) based on Internet protocols replace devices that use proprietary protocols. Information captured by edge devices on the factory floor is secure and accessible from any location in real time, opening the communication gateway both vertically (connecting machines across the factory and enabling the instant availability of data to stakeholders within operational silos) and horizontally (with one framework for the entire supply chain, across departments, business units, global factory locations and other markets). End-to-end security and privacy solutions in IoT space require agile, context-aware and scalable components with mechanisms that are both fluid and adaptive. The convergence of IT (information technology) and OT (operational technology) makes security and privacy by default a new important element where security is addressed at the architecture level, across applications and domains, using multi-layered distributed security measures. Blockchain is transforming industry operating models by adding trust to untrusted environments, providing distributed security mechanisms and transparent access to the information in the chain. Digital technology platforms are evolving, with IoT platforms integrating complex info