Download Free Nanocomposite Membrane Technology Book in PDF and EPUB Free Download. You can read online Nanocomposite Membrane Technology and write the review.

Nanocomposite Membrane Technology: Fundamentals and Applications is the first book to deliver an extensive exploration of nanocomposite membrane technology. This groundbreaking text offers an eloquent introduction to the field as well as a comprehensive overview of fundamental aspects and application areas. Approaching the subject from the material
Nanocomposite Membranes for Water and Gas Separation presents an introduction to the application of nanocomposite membranes in both water and gas separation processes. This in-depth literature review and discussion focuses on state-of-the-art nanocomposite membranes, current challenges and future progress, including helpful guidelines for the further improvement of these materials for water and gas separation processes. Chapters address material development, synthesis protocols, and the numerical simulation of nanocomposite membranes, along with current challenges and future trends in the areas of water and gas separation. - Explains the development of nanocomposite membranes through bio-mimicking nanomaterials - Discusses the surface modification of nanomaterials to fabricate robust nanocomposite membranes - Outlines the environmental and operational challenges for the application of nanocomposite membranes
The development of a new class of nanocomposite membranes has served as one of the most prominent strategies to address the intrinsic limitations of conventionally used polymeric and inorganic membranes. Nanocomposite membranes consist of nanosized inorganic nanomaterials that are incorporated into the structure of continuous polymer matrices. Owing to the exceptional properties exhibited by the nanomaterials, the resultant nanocomposite membranes demonstrate higher selectivity and permeability that surpass the Robeson upper boundary limit. Nanocomposite Membranes for Gas Separation provides a comprehensive review of the advances made in the development and application of gas separation nanocomposite membranes. In particular, the book covers the focuses on the fabrication, modification, characterization and applications of nanocomposite membranes for gas separation. It is an important reference source both for materials scientists, environmental engineers and chemical engineers who are looking to understand how nanocomposite membranes are being used to create better techniques for gas separation.
Polymer Nanocomposite Membranes for Pervaporation assesses recent applications in the pervaporation performance of polymer nanocomposites of different length scales. The book discusses the effects of a range of nanofillers, their dispersion, the effect of different polymers, and organic and inorganic nanomaterials in the pervaporation process. In addition, the book explores how the different properties of a variety of nanocomposite materials make them better for use in different types of liquids, while also discussing the challenges of using different nanocomposites for this purpose effectively and safely. In particular, polymer nanocomposites for g nanoscale dispersion, filler/polymer interactions, and morphology are addressed. This is an important reference source for materials scientists, chemical engineers and environmental engineers who want to learn more about how polymer nanocomposites are being used to make the pervaporation separation process more effective.
This book presents emerging economical and environmentally friendly polymer composites that are free of the side effects observed in traditional composites. It focuses on eco-friendly composite materials using granulated cork, a by-product of the cork industry; cellulose pulp from the recycling of paper residues; hemp fibers; and a range of other environmentally friendly materials procured from various sources. The book presents the manufacturing methods, properties and characterization techniques of these eco-friendly composites. The respective chapters address classical and recent aspects of eco-friendly polymer composites and their chemistry, along with practical applications in the biomedical, pharmaceutical, automotive and other sectors. Topics addressed include the fundamentals, processing, properties, practicality, drawbacks and advantages of eco-friendly polymer composites. Featuring contributions by experts in the field with a variety of backgrounds and specialties, the book will appeal to researchers and students in the fields of materials science and environmental science. Moreover, it fills the gap between research work in the laboratory and practical applications in related industries.
Advanced Nanomaterials for Membrane Synthesis and Its Applications provides the academic and industrial communities the most up-to-date information on the latest trends in membrane nanomaterials and membrane nanotechnology used in wastewater treatment, environmental technology and energy. The rapid advances in nanomaterials and nanotechnology development over the past decade have resulted in significant growth of the membrane business for various industrial processes, particularly in nanotechnology-based membrane processes. While membrane technology is increasingly being used for liquid and gas separations, it has great potential in a variety of additional applications. As the worldwide academic community has a strong interest in advanced membrane processes, particularly membrane nanotechnology for specific separations, this book provides a timely update on the topic. - Presents a unique focus on the use of advanced nanomaterials in membrane fabrication/modification, and in the description of membrane nanotechnologies, such as nanofiltration, thin film nanocomposites and nanofibers for various applications - Describes next generation membranes, providing first resource details on the development and commercialization stages of these new membranes - Represents the state-of-the-art on the use of nanomaterials in membrane science
This ready reference on Membrane Technologies for Water Treatment, is an invaluable source detailing sustainable, emerging processes, to provide clean, energy saving and cost effective alternatives to conventional processes. The editors are internationally renowned leaders in the field, who have put together a first-class team of authors from academia and industry to present a highly approach to the subject. The book is an instrumental tool for Process Engineers, Chemical Engineers, Process Control Technicians, Water Chemists, Environmental Chemists, Materials Scientists and Patent Lawyers.
A detailed look at the most recent developments in sustainable membrane technology for use in energy, water, and the environment A collection of twenty-seven groundbreaking papers on important ideas about the development of membrane science and technology, Sustainable Membrane Technology for Energy, Water, and Environment brings together contributions from leading international experts in one comprehensive volume. Covering the latest developments and most innovative ideas in the field, this book is a unique resource for understanding the growing interest in using membranes across several industries. Divided into six chapters that cover new membrane materials and membrane development; membrane applications for gas and vapor separation; membrane applications in water treatment; environmental applications of membranes; energy applications of membranes; and other industrial membrane applications, the book looks at the current and emerging applications for membrane science and technology in detail. As the Association of Southeast Asian Nations (ASEAN) and the Middle East emerge as the next generation of membrane research and development centers, in part due to their need for water and natural gas production technology, this book provides invaluable insights into the cutting-edge work taking place in these regions. Additional topics covered also include new membrane materials, membrane applications for food processing, and much more. Designed for engineers, scientists, professors, and graduate students who are engaged in membrane R&D activities, as well as for anyone interested in sustainable development, Sustainable Membrane Technology for Energy, Water, and Environment is a cutting-edge look at membrane applications.
Contributed by multiple experts, the book covers the scientific and engineering aspects of membrane processes and systems. It aims to cover basic concepts of novel membrane processes including membrane bioreactors, microbial fuel cell, forward osmosis, electro-dialysis and membrane contactors. Maintains a pragmatic approach involving design, operation and cost analysis of pilot plants as well as scaled-up counterparts
The book focuses on Application of Nanotechnology in Membranes for Water Treatment but not only provides a series of innovative solutions for water reclamation through advanced membrane technology but also serves as a medium to promote international cooperation and networking for the development of advanced membrane technology for Universal well-being and to achieve the common goal of supplying economically, environmentally and societally sustainable freshwater and better sanitation systems. This book is unique because the chapters were authored by established researchers all around the globe based on their recent research findings. In addition, this book provides a holistic coverage of membrane development for water treatment, from the membrane preparation and characterizations to the performance for specific processes and applications. Since that water scarcity has become a global risk and one of the most serious challenges for the scientific community in this century, the publication of this book is therefore significant as it will serve as a medium for a good reference of an alternative solution in water reclamation. This book will provide the readers with a thorough understanding of the different available approaches for manufacturing membranes both with innovative polymeric systems and inorganic nano-materials which could give enhanced functionalities, catalytic and antimicrobial activities to improve the performance of the existing membranes. It will be useful for leading decision and policy makers, water sector representatives and administrators, policy makers from the governments, business leaders, business houses in water treatment, and engineers/ scientists from both industrialized and developing countries as well.