Download Free Nanocarriers In Neurodegenerative Disorders Book in PDF and EPUB Free Download. You can read online Nanocarriers In Neurodegenerative Disorders and write the review.

This book focuses on neurodegenerative diseases which have become a major threat to human health. Neurodegenerative diseases are age related disorders and have become increasingly prevalent in the elderly population in recent years. Hence, there is an urgent need to study and develop new strategies and alternative methods for the treatment of neurodegenerative diseases. This book showcases the promises that nanobiotechnology brings in research, diagnosis, and treatment of neurodegenerative diseases. It is very beneficial for varied group of readers including nanotechnologists, biotechnologists, pharmacists, medical professionals, bioengineers, biochemists and researchers working in this field. Nanobiotechnology in Neurodegenerative Diseases include various chapters including neurodegeneration and neurodegenerative diseases, nanotechnology for the rescue of neurodegenerative diseases, promising potential of nanomaterials for diagnosis and therapy of neurodegenerative diseases, nanotechnology mediated nose-to-brain drug delivery, and formulation and characterization of intranasal nanoparticles of antiretroviral drugs.
This book, written by a leading panel of experts in the field of neurosciences, provides a comprehensive overview of the pathology of neurodegenerative diseases as well as the preventive measures. Prevention is important due to the lack of early diagnostic markers and the limitations/ problems of treating neurodegenerative diseases
Neural Regenerative Nanomedicine presents novel, significant, experimental results relating to nanoscience and nanotechnology in neural regeneration. As current research is at the forefront of healing the nervous system, the content in the book focuses on basic, translational and clinical research in neural repair and regeneration. Chapters focus on stem cell biology to advance medical therapies for devastating disorders, the complex, delicate structures that make up the nervous system, and neurodegenerative diseases that cause progressive deterioration, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS), multiple sclerosis and multiple system atrophy. - Presents a multidisciplinary focus on all research areas surrounding the applications of nanotechnology in neural regeneration - Provides a guide for physician and scientists, including necessary expertise for bioengineers, materials engineers, those in biomaterials and nanoengineering, stem cell biologists, and chemists - Covers many disciplines, including bioengineering, biomaterials, tissue engineering, regenerative medicine, neural regenerative medicine, and nanomedicine
Due to the lack of secure, efficient, and patient-friendly therapies for neurodegenerative disorders, there is a rising demand for innovative approaches. Despite the limited number of nanocarriers approved for human use, they have demonstrated significant potential in preclinical and, in some instances, clinical trials. In alignment with this objective, the chapters of the book are structured to offer a comprehensive overview of recent advancements in medication and dosage form development, specifically emphasizing the nanoparticulate system for targeting the brain. This book aims to furnish readers with a thorough understanding of the clinical application of nanocarrier systems for treating neurodegenerative disorders, encompassing the latest developments, challenges, safety concerns, toxicity issues, regulatory considerations, prospects, and limitations. Individuals in academia, the scientific community, business, and education seeking a more effective approach to target the brain will find valuable insights in this resource. Key Features Provides a comparative perspective of various nanocarrier systems, therefore facilitating the researcher's selection of appropriate nanoparticulate carriers Highlights the related restrictions of brain delivery and current available medicines Includes information on the advantages and disadvantages of various biomaterials utilized in the development of nanocarriers for brain targeting Emphasizes distinct facets of surface functionalization according to the brain area of interest Presents the current advances, preclinical and clinical development, and the future potential of multiple brain-targeting technologies
NANOTECHNOLOGY IN MEDICINE Discover thorough insights into the toxicology of nanomaterials used in medicine In Nanotechnology in Medicine: Toxicity and Safety, an expert team of nanotechnologists delivers a robust and up-to-date review of current and future applications of nanotechnology in medicine with a special focus on neurodegenerative diseases, cancer, diagnostics, nano-nutraceuticals, dermatology, and gene therapy. The editors offer resources that address nanomaterial safety, which tends to be the greatest hurdle to obtaining the benefits of nanomedicine in healthcare. The book is a one-stop resource for recent and comprehensive information on the toxico logical and safety aspects of nanotechnology used in human health and medicine. It provides readers with cutting-edge techniques for delivering therapeutic agents into targeted cellular compartments, cells, tissues, and organs by using nanoparticulate carriers. The book also offers methodological considerations for toxicity, safety, and risk assessment. Nanotechnology in Medicine: Toxicity and Safety also provides readers with: A thorough introduction to the nanotoxicological aspects of nanomedicine, including translational nanomedicine and nanomedicine personalization Comprehensive introductions to nanoparticle toxicity and safety, including selenium nanoparticles and metallic nanoparticles Practical discussions of nanotoxicology and drug delivery, including gene delivery using nanocarriers and the use of nanomaterials for ocular delivery applications In-depth examinations of nanotechnology ethics and the regulatory framework of nanotechnology and medicine Perfect for researchers, post-doctoral candidates, and specialists in the fields of nanotechnology, nanomaterials, and nanocarriers, Nanotechnology in Medicine: Toxicity and Safety will also prove to be an indispensable part of the libraries of nanoengineering, nanomedicine, and biopharmaceutical professionals and nanobiotechnologists.
Nanoemulsions: Formulation, Applications, and Characterization provides detailed information on the production, application and characterization of food nanoemulsion as presented by experts who share a wealth of experience. Those involved in the nutraceutical, pharmaceutical and cosmetic industries will find this a useful reference as it addresses findings related to different preparation and formulation methods of nanoemulsions and their application in different fields and products. As the last decade has seen a major shift from conventional emulsification processes towards nanoemulsions that both increase the efficiency and stability of emulsions and improve targeted drug and nutraceutical delivery, this book is a timely resource. - Summarizes general aspects of food nanoemulsions and their formulation - Provides detailed information on the production, application, and characterization of food nanoemulsion - Reveals the potential of nanoemulsions, as well as their novel applications in functional foods, nutraceutical products, delivery systems, and cosmetic formulations - Explains preparation of nanoemulsions by both low- and high-energy methods
Direct Nose-to-Brain Drug Delivery provides the reader with precise knowledge about the strategies and approaches for enhanced nose-to-brain drug delivery. It highlights the development of novel nanocarrier-based drug delivery systems for targeted drug delivery to the brain microenvironments with a focus on the technological advances in the development of the novel drug delivery devices for intranasal administration, including special emphasis on brain targeting through nose. This book explores the various quantification parameters to assess the brain targeting efficiency following intranasal administration and includes an overview on the toxicity aspects of the various materials used to develop the direct nose-to-brain drug delivery vehicles and of the regulatory aspects including patents and current clinical status of the potential neurotherapeutics for the effective management of neuro-ailments. Technological advances in new drug delivery systems with diverse applications in pharmaceutical, biomedical, biomaterials, and biotechnological fields are also explained. This book is a crucial source that will assist the veteran scientists, industrial technologists, and clinical research professionals to develop new drug delivery systems and novel drug administration devices for the treatment of neuro-ailments. - Explains the targeting approaches for enhanced brain targeting following intranasal drug administration - Explores the various nanocarriers developed to date for neurotherapeutic delivery via nose-to-brain - Discusses pharmaceutical and biomedical applications after nose-to-brain delivery of therapeutic pharmaceuticals and biologicals
Exploring fundamental concepts, Drug Delivery Nanoparticles Formulation and Characterization presents key aspects of nanoparticulate system development for various therapeutic applications and provides advanced methods used to file for regulatory approval.This comprehensive guide features:Process Analytical Techniques (PAT) used in manufacturing Na
This book summarizes the latest research on drug and gene delivery to the central nervous system (CNS). The chapters address safety concerns regarding the nanotechnology that is needed to develop nanomedicine for clinical practice. Particular focus is given to new technologies that have emerged in recent years to deliver therapeutic materials, such as genes, drugs, and other agents using nanotechnologies of diverse origin. This is an ideal book for students, teachers, researchers, and clinicians interested in a deeper understanding of nanotechnological advances in therapeutic medicine. This book also: Broadens readers’ understanding of viral vector gene delivery to the brain for treating neurogenetic diseases as well as targeted gene delivery into the brain using microbubble-facilitated focused ultrasound Covers in detail the latest developments in delivering therapeutic materials, such as siRNA delivery to the brain for treating neurological diseases, neuroprotective effects of gelatin nanoparticles in stroke, and nanowired drug delivery for brain diseases, heat stroke, and CNS injury Enriches understanding of new technologies for delivering therapeutic materials treating Alzheimer’s Disease, including targeted nanodrug delivery through the blood-brain barrier and the superior neuroprotective effects of nanowired drug delivery in Alzheimer’s Disease
The Handbook of Immunological Properties of Engineered Nanomaterials provides a comprehensive overview of the current literature, methodologies, and translational and regulatory considerations in the field of nanoimmunotoxicology. The main subject is the immunological properties of engineered nanomaterials. Focus areas include interactions between engineered nanomaterials and red blood cells, platelets, endothelial cells, professional phagocytes, T cells, B cells, dendritic cells, complement and coagulation systems, and plasma proteins, with discussions on nanoparticle sterility and sterilization. Each chapter presents a broad literature review of the given focus area, describes protocols and resources available to support research in the individual focus areas, highlights challenges, and outlines unanswered questions and future directions. In addition, the Handbook includes an overview of and serves a guide to the physicochemical characterization of engineered nanomaterials essential to conducting meaningful immunological studies of nanoparticles. Regulations related to immunotoxicity testing of materials prior to their translation into the clinic are also reviewed.The Handbook is written by top experts in the field of nanomedicine, nanotechnology, and translational bionanotechnology, representing academia, government, industry, and consulting organizations, and regulatory agencies. The Handbook is designed to serve as a textbook for students, a practical guide for research laboratories, and an informational resource for scientific consultants, reviewers, and policy makers. It is written such that both experts and beginners will find the information highly useful and applicable.