Download Free Nano Technology For Battery Recycling Remanufacturing And Reusing Book in PDF and EPUB Free Download. You can read online Nano Technology For Battery Recycling Remanufacturing And Reusing and write the review.

Nanotechnology for Battery Recycling, Remanufacturing, and Reusing explores how nanotechnology is currently being used in battery recycling, remanufacturing and reusing technologies to make them economically and environmentally feasible. The book shows how nanotechnology can be used to enhance and improve battery recycling, remanufacturing and reusing technologies, covering the fundamentals of battery recycling, remanufacturing and reusing technologies, the role of nanotechnology, the separation, regeneration and reuse of nanomaterials from battery waste, nano-enabled approaches for battery recycling, and nano-enabled approaches for battery remanufacturing and reusing. This book will help researchers and engineers to better understand the role of nanotechnology in the field of battery recycling, remanufacturing and reusing. It will be an important reference source for materials scientists and engineers who would like to learn more about how nanotechnology is being used to create new battery recycling processes. Outlines practical and cost-efficient processes for recycling and reusing batteries Highlights the different types of nanomaterials used in battery recycling processes Assesses major challenges with integrating nanotechnology into battery manufacturing processes on an industrial scale
Managing solid waste is one of the biggest challenges in urban areas around the world. Technologically advanced economies generate vast amounts of organic waste materials, many of which are disposed of in landfills. In the future, efficient use of carbon-containing waste and all other waste materials must be increased to reduce the need for virgin raw materials acquisition, including biomass, and reduce carbon emissions to the atmosphere, mitigating climate change. Moreover, expeditious development in information and communications technology (ICT) has made the machines more powerful and efficient, but at the same time, there is a simultaneous decrease in product life leading to an extensive rise in the annual production of e-waste, or electronic waste. Considering the health hazards and environmental implications of e-waste, it has become a global problem that needs serious attention. The Handbook of Research on Safe Disposal Methods of Municipal Solid Wastes for a Sustainable Environment covers waste management principles and strategies in different fields and corresponding applications. The book also focuses on the waste management strategies for a sustainable environment that have emerged. Covering key topics such as waste, energy, and recycling, this premier reference source is an excellent resource for environmentalists, government officials, researchers, scholars, academicians, practitioners, instructors, and students.
Biomedical Applications of Perovskites: The Era of Bio-Piezoelectric Systems focuses on recent developments in the area of piezoelectric systems and their biomedical applications. A compilation of 19 edited chapters covers different piezoelectric materials, device designs, and their use cases. Readers will be familiarized with the many perovskite materials being used in research and development as well as the role they play in designing novel medical devices and biomaterials. Key Features - systematically explains the piezoelectric perovskite materials starting from their introduction, their structure and synthesis techniques - explains the key materials used in devices such as pacemakers and nanogenerators - highlights a range of applications including bone regeneration and growth, bone replacement, tissue engineering, dental science, neurotrauma and neurodegenerative disease treatment and bionic prosthesis - discusses future challenges and the roadmap for piezoelectric perovskite materials - Presents scientific references for advanced reading
Nanomaterial Recycling provides an update on the many benefits nanomaterials can provide on both environmental and economic issues. Sections cover the appropriate recycling strategies of nanowastes, nanowaste regulations (including nanowaste disposal and recycling standards), promising applications (reuses) of these recycled nanomaterials, and various methods used for the separation of nanoparticles, including (i) centrifugation, (ii)solvent evaporation, (iii) magnetic separation, (iv) using pH/thermal responsive materials, (v) molecular antisolvents, (vi) nanostructured colloidal solvents, and more. This book is an important reference source for materials scientists and engineers who are seeking to increase their understanding of nanomaterials, recycling processes and techniques. As nanomaterials can be recycled from both new/pure products (from nano manufacturing) and used products (nano waste: waste from nano integrated products), this book is a welcomed addition to many disciplines. Provides information on how nanoscale recycling techniques can mitigate the most hazardous effects of nanomaterials Explains the major recycling processes and techniques used for nanoscale materials Assesses the major challenges of implementing nanoscale recycling approaches in a scalable and cost-effective manner
As lithium-ion batteries are an efficient energy storage mechanism, their use in vehicles is increasing to support electrification to meet increasing average mileage and decreasing greenhouse gas emission standards. Principles of environmentalism and sustainability suggest the development of processes for the remanufacturing, repurposing, and recycling of post-vehicle-application lithium-ion batteries. Proprietary commercial processes for remanufacturing for reuse in vehicles require safe battery testing that is supported by a newly developed workbench. Repurposing, with a focus on stationary energy storage applications and the development of battery management systems, is demonstrated. Recycling to recover the battery component materials using manual disassembly and acid leaching at relatively low temperatures and in short time periods is shown to be effective. A cost benefit-analysis shows that remanufacturing is profitable. Repurposing is profitable if the development cost is no more than $83/kWh to $114/kWh, depending on research and development expenses. Recycling, driven by environmental and sustainability principles, is not profitable in isolation. The cost of recycling must be borne by remanufacturing and repurposing. A forecasting model shows that the number of post-vehicle-application lithium-ion batteries will be sufficient to support remanufacturing, repurposing, and recycling.
This book discusses the recent advances in the wastes recycling technologies to provide low-cost and alternative ways for nanomaterials production. It shows how carbon nanomaterials can be synthesized from different waste sources such as banana fibers, argan (Argania spinosa) seed shells, corn grains, camellia oleifera shell, sugar cane bagasse, oil palm (empty fruit bunches and leaves) and palm kernel shells. Several nanostructured metal oxides (MnO2, Co3O4,....) can be synthesized via recycling of spent batteries. The recovered nanomaterials can be applied in many applications including: Energy (supercapacitors, solar cells, etc.) water treatments (heavy metal ions and dyes removal) and other applications. Spent battery and agriculture waste are rich precursors for metals and carbon, respectively. The book also explores the various recycling techniques, agriculture waste recycling, batteries recycling, and different applications of the recycled materials.
This book combines two areas of intense interest: nanotechnology, and energy conversion and storage devices. In particular, Li-ion batteries have enjoyed conspicuous success in many consumer electronic devices and their projected use in vehicles that will revolutionize the way we travel in the near future. For many applications, Li-ion batteries are the battery of choice. This book consolidates the scattered developments in all areas of research related to nanotechnology and lithium ion batteries.
Water Electrical and Electronic Equipment Recycling: Aqueous Recovery Methods provides data regarding the implementation of aqueous methods of processing of WEEEs at the industrial level. Chapters explore points-of-view of worldwide researchers and research project managers with respect to new research developments and how to improve processing technologies. The text is divided into two parts, with the first section addressing the new research regarding the hydrometallurgical procedures adopted from minerals processing technologies. Other sections cover green chemistry, bio-metallurgy applications for WEEE treatment and the current developed aqueous methods at industrial scale. A conclusion summarizes existing research with suggestions for future actions. Provides a one-stop reference for hydrometallurgical processes of metal recovery from WEEE Includes methods presented through intended applications, including waste printed circuit boards, LCD panels, lighting and more Contains suggestions and recommendations for future actions and research prospects
This book addresses recycling technologies for many of the valuable and scarce materials from spent lithium-ion batteries. A successful transition to electric mobility will result in large volumes of these. The book discusses engineering issues in the entire process chain from disassembly over mechanical conditioning to chemical treatment. A framework for environmental and economic evaluation is presented and recommendations for researchers as well as for potential operators are derived.
​This book presents a state-of-the-art review of recent advances in the recycling of spent lithium-ion batteries. The topics covered include: introduction to the structure of lithium-ion batteries; development of battery-powered electric vehicles; potential environmental impact of spent lithium-ion batteries; pretreatment of spent lithium-ion batteries for recycling processing; pyrometallurgical processing for recycling spent lithium-ion batteries; hydrometallurgical processing for recycling spent lithium-ion batteries; direct processing for recycling spent lithium-ion batteries; high value-added products from recycling of spent lithium-ion batteries; and effects of recycling of spent lithium-ion batteries on environmental burdens. The book provides an essential reference resource for professors, researchers, and policymakers in academia, industry, and government around the globe.