Download Free Nano Hetero Structures For Chemical Sensing Opportunities And Challenges Book in PDF and EPUB Free Download. You can read online Nano Hetero Structures For Chemical Sensing Opportunities And Challenges and write the review.

This book presents a state-of-the-art summary and critical analysis of work recently performed in leading research laboratories around the world on the implementation of metal oxide nanomaterial research methodologies for the discovery and optimization of new sensor materials and sensing systems. The book provides a detailed description and analysis of (i) metal oxide nanomaterial sensing principles, (ii) advances in metal oxide nanomaterial synthesis/deposition methods, including colloidal, emulsification, and vapor processing techniques, (iii) analysis of techniques utilized for the development of low temperature metal oxide nanomaterial sensors, thus enabling a broader impact into sensor applications, (iv) advances, challenges and insights gained from the in situ/ex situ analysis of reaction mechanisms, and (v) technical development and integration challenges in the fabrication of sensing arrays and devices.
This 21st Century Nanoscience Handbook will be the most comprehensive, up-to-date large reference work for the field of nanoscience. Handbook of Nanophysics, by the same editor, published in the fall of 2010, was embraced as the first comprehensive reference to consider both fundamental and applied aspects of nanophysics. This follow-up project has been conceived as a necessary expansion and full update that considers the significant advances made in the field since 2010. It goes well beyond the physics as warranted by recent developments in the field. Key Features: Provides the most comprehensive, up-to-date large reference work for the field. Chapters written by international experts in the field. Emphasises presentation and real results and applications. This handbook distinguishes itself from other works by its breadth of coverage, readability and timely topics. The intended readership is very broad, from students and instructors to engineers, physicists, chemists, biologists, biomedical researchers, industry professionals, governmental scientists, and others whose work is impacted by nanotechnology. It will be an indispensable resource in academic, government, and industry libraries worldwide. The fields impacted by nanoscience extend from materials science and engineering to biotechnology, biomedical engineering, medicine, electrical engineering, pharmaceutical science, computer technology, aerospace engineering, mechanical engineering, food science, and beyond.
Van der Waals Heterostructures A comprehensive resource systematically detailing the developments and applications of van der Waals heterostructures and devices Van der Waals Heterostructures is essential reading to understand the developments made in van der Waals heterostructures and devices in all aspects, from basic synthesis to physical analysis and heterostructures assembling to devices applications, including demonstrated applications of van der Waals heterostructure on electronics, optoelectronics, and energy conversion, such as solar energy, hydrogen energy, batteries, catalysts, biotechnology, and more. This book starts from an in-depth introduction of van der Waals interactions in layered materials and the forming of mixed-dimensional heterostructures via van der Waals force. It then comprehensively summarizes the synthetic methods, devices building processes and physical mechanism of 2D van der Waals heterostructures, and devices including 2D-2D electronics, 2D-2D optoelectronics, and mixed dimensional van der Waals heterostructures. In Van der Waals Heterostructures, readers can expect to find specific information on: The current library of 2D semiconductors and the current synthesis and performances of 2D semiconductors Controllable synthesis and assemble van der Waals heterostructures, physics of the van der Waals interface, and multi-field coupling effects 2D-2D electronics, 2D-2D optoelectronics, mixed dimensional van der Waals heterostructures, and van der Waals heterostructure applications on energy conversion Insight into future perspectives of the van der Waals heterostructures and devices with the detailed effective role of 2D materials for integrated electrical and electronic equipment
Nanotechnology-based E-Noses reviews advances in nanomaterials and their modification for use in e-sensors. "E-noses" or "electronic sensors" are emerging as advanced technologies for the fast detection of chemicals, gases, and explosives. The concept behind the "e-nose" is similar to the capability of humans and dogs in detecting materials based on odors. Nanomaterials can be used for e-nose technologies but their properties must be modified to make them effective sensors. The sensing capability and performance of these materials depend on several factors, such as morphology, dopants, microadditives, design of sensors, phase, and structure of the nanomaterials. Theoretical understanding of nanomaterials and technologies for improving sensors with better detection limits are covered. The most relevant nanomaterials, their synthesis strategies, and the relationship between properties and device performance are provided. Current state-of-the-art progress in nanotechnology device fabrication along with directions for future applications and challenges are discussed. - Covers fundamentals of nanomaterials for electronic sensing applications, including material synthesis and property optimization strategies to improve material performance - Reviews emerging relevant nanomaterials including 1D, 2D and 3D nanomaterials for use in e-nose technologies - Discusses nanotechnology-based e-noses and their wide range of applications in the detection of chemicals, gases, explosives, and more
This book contains most updated information on synthesis of magnetic nanohybrids, their physio-chemical properties, and key biological applications. It highlights the complexity of nanoheterostructures, especially magnetic metal oxides, ferrites and doped magnetic nanomaterials, and discusses their potential applications in the early detection, imaging and treatment of cancer. It also covers the toxicity and risk assessment of multifunctional nanomaterials. Providing an overview of magnetic nanoheterostructures, it appeals to a wide audience, from beginners and graduate-level students to experts in academia and industry.
Nanotube Superfiber Materials refers to different forms of macroscale materials with unique properties constructed from carbon nanotubes. These materials include nanotube arrays, ribbons, scrolls, yarn, braid, and sheets. Nanotube materials are in the early stage of development and this is the first dedicated book on the subject. Transitioning from molecules to materials is a breakthrough that will positively impact almost all industries and areas of society. Key properties of superfiber materials are high flexibility and fatigue resistance, high energy absorption, high strength, good electrical conductivity, high maximum current density, reduced skin and proximity effects, high thermal conductivity, lightweight, good field emission, piezoresistive, magnetoresistive, thermoelectric, and other properties. These properties will open up the door to dozens of applications including replacing copper wire for power conduction, EMI shielding, coax cable, carbon biofiber, bullet-proof vests, impact resistant glass, wearable antennas, biomedical microdevices, biosensors, self-sensing composites, supercapacitors, superinductors, hybrid superconductor, reinforced elastomers, nerve scaffolding, energy storage, and many others. The scope of the book covers three main areas: Part I: Processing; Part II: Properties; and Part III: Applications. Processing involves nanotube synthesis and macro scale material formation methods. Properties covers the mechanical, electrical, chemical and other properties of nanotubes and macroscale materials. Different approaches to growing high quality long nanotubes and spinning the nanotubes into yarn are explained in detail. The best ideas are collected from all around the world including commercial approaches. Applications of nanotube superfiber cover a huge field and provides a broad survey of uses. The book gives a broad overview starting from bioelectronics to carbon industrial machines. - First book to explore the production and applications of macro-scale materials made from nano-scale particles - Sets out the processes for producing macro-scale materials from carbon nanotubes, and describes the unique properties of these materials - Potential applications for CNT fiber/yarn include replacing copper wire for power conduction, EMI shielding, coax cable, carbon biofiber, bullet-proof vests, impact resistant glass, wearable antennas, biomedical microdevices, biosensors, self-sensing composites, supercapacitors, superinductors, hybrid superconductor, reinforced elastomers, nerve scaffolding, energy storage, and many others
Nanostructured materials (NMs) are attracting interest as low-dimensional materials in the high-tech era of the 21st century. Recently, nanomaterials have experienced breakthroughs in synthesis and industrial and biomedical applications. This book presents recent achievements related to NMs such as graphene, carbon nanotubes, plasmonic materials, metal nanowires, metal oxides, nanoparticles, metamaterials, nanofibers, and nanocomposites, along with their physical and chemical aspects. Additionally, the book discusses the potential uses of these nanomaterials in photodetectors, transistors, quantum technology, chemical sensors, energy storage, silk fibroin, composites, drug delivery, tissue engineering, and sustainable agriculture and environmental applications.
2D Materials for Electronics, Sensors and Devices: Synthesis, Characterization, Fabrication and Application provides an overview of various top-down and bottom-up synthesis techniques, along with stitching, stacking and stoichiometric control methods for different 2D materials and their heterostructures. The book focuses on the widespread applications of various 2D materials in high-performance and low-power sensors, field effect devices, flexible electronics, straintronics, spintronics, brain-inspired electronics, energy harvesting and energy storage devices. This is an important reference for materials scientists and engineers looking to gain a greater understanding on how 2D materials are being used to create a range of low cost, sustainable products and devices. - Discusses the major synthesis and preparation methods of a range of emerging 2D electronic materials - Provides state-of–the-art information on the most recent advances, including theoretical and experimental studies and new applications - Discusses the major challenges of the mass application of 2D materials in industry
Unique in providing an overview of the subject on the scientific level, this book presents the current state of the art with regard to different aspects of sustainable energy production and its efficient storage. The broad scope ranges from nanomaterials for energy production, via fuel cells and nanostructured materials for fuel production, right up to supercapacitors and climate change. Edited by a rising star within the community, this is an invaluable work on a hot topic for materials scientists, solid state, surface and physical chemists, as well as those chemists working in industry and chemical engineers.