Download Free Mycorrhizal Ecology Book in PDF and EPUB Free Download. You can read online Mycorrhizal Ecology and write the review.

A great many terrestrial plants live in close association with fungi. The features of this association, which is known as mycorrhiza, are those of a mutualistic symbiosis. Almost all plants from mycorrhizae whereby the fungus provides soil resources to the plant in exchange for energy provided by the plant. The symbiosis means greater productivity under stress for the plant and a steady energy supply for the fungus. This book addresses the diverse and complex ways in which mycorrhizae affect the mechanism for plant survival as individuals and populations, for community structure and functioning. An evolutionary/ecological approach is used to describe how and under what conditions mycorrhizal symbioses range from managing natural and agricultural lands to biotechnological processes that enhance agricultural productivity and sustainability. The Ecology of Mycorrhizae will be an invaluable book, applicable to all levels of theoretical and applied research in agronomy, botany, ecology, environmental microbiology, and plant pathology.
This multi-authored book gives an overview of recent advances and breakthroughs in the field of mycorrhizal ecology. The text elucidates mechanisms that determine plant biodiversity - a prerequisite to ensuring successful management for the conservation and restoration of ecosystems. Topics covered include: all the major mycorrhizal types, plant population biology, multitrophic interactions, biological diversity, ecosystem functioning, global change and evolution. This volume shows that collaboration in the rhizosphere is essential for plants, microbes, plant communities and ecosystems. It has been written with ecologists in mind, giving them easy access to an understanding of how these important interactions could shape our ecosystems.
Mycorrhizae are mutualisms between plants and fungi that evolved over 400 million years ago. This symbiotic relationship commenced with land invasion, and as new groups evolved, new organisms developed with varying adaptations to changing conditions. Based on the author's 50 years of knowledge and research, this book characterizes mycorrhizae through the most rapid global environmental changes in human history. It applies that knowledge in many different scenarios, from restoring strip mines in Wyoming and shifting agriculture in the Yucatán, to integrating mutualisms into science policy in California and Washington, D.C. Toggling between ecological theory and natural history of a widespread and long-lived symbiotic relationship, this interdisciplinary volume scales from structure-function and biochemistry to ecosystem dynamics and global change. This remarkable study is of interest to a wide range of students, researchers, and land-use managers.
The roots of most plants are colonized by symbiotic fungi to form mycorrhiza, which play a critical role in the capture of nutrients from the soil and therefore in plant nutrition. Mycorrhizal Symbiosis is recognized as the definitive work in this area. Since the last edition was published there have been major advances in the field, particularly in the area of molecular biology, and the new edition has been fully revised and updated to incorporate these exciting new developments. - Over 50% new material - Includes expanded color plate section - Covers all aspects of mycorrhiza - Presents new taxonomy - Discusses the impact of proteomics and genomics on research in this area
This book offers a timely overview and synthesis of biogeographic patterns of plants and fungi and their mycorrhizal associations across geographic scales. Written by leading experts in the field, it provides an updated definition of mycorrhizal types and establishes the best practices of modern biogeographic analyses. Individual chapters address the basic processes and mechanisms driving community ecology, population biology and dispersal in mycorrhizal fungi, which differ greatly from these of prokaryotes, plants and animals. Other chapters review the state-of-the-art knowledge about the distribution, ecology and biogeography of all mycorrhizal types and the most important fungal groups involved in mycorrhizal symbiosis. The book argues that molecular methods have revolutionized our understanding of the ecology and biogeography of mycorrhizal symbiosis and that rapidly evolving high-throughput identification and genomics tools will provide unprecedented information about the structure and functioning of mycorrhizal symbiosis on a global scale. This volume appeals to scientists in the fields of plant and fungal ecology and biogeography.
In order to feed the world, global agriculture will have to double food production by 2050. As a result, the use of soils with fertilizers and pesticides in agronomic ecosystems will increase, taking into account the sustainability of these systems and also the provision of food security. Thus, soil ecosystems, their health, and their quality are directly involved in sustainable agronomical practices, and it is important to recognize the important role of soil microbial communities such as mycorrhizal fungi, their biodiversity, interactions, and functioning. Soil ecosystems are under the threat of biodiversity loss due to an increase of cultivated areas and agronomic exploitation intensity. Also, changes in land use alter the structure and function of ecosystems where biodiversity is vital in the ecosystem. Soils are a major aid in food production in all terrestrial ecosystems; however, this means they are also involved in gas emission and global warming. Thus, in agronomic ecosystems, several mitigation practices have been proposed to promote the increase of carbon soil stock, and the reduction of warming gas emission from soils. In South America, most of the rural population depends economically on agriculture and usually works in family units. New, organic, safe, and sustainable agro-forestry practices must be applied to support local communities and countries to achieve hunger eradication, rural poverty reduction, and sustainable development. This book compiles new information for mycorrhizal occurrence in natural and anthropic environments in South America. It includes new reports of mycorrhizal fungi diversity along different mycorrhizal types and their effect on plant communities, plant invasions, the use of mycorrhizal fungi for ecological and sustainable studies, management programs of natural and agroecosystems, and forestry and food-secure production. This book fills the gaps in biodiversity knowledge, management and safe food production of mycorrhizas. It should be a valuable help to researchers, professors and students, to aid in use of mycorrhizal fungi while also focusing on their biodiversity, sustainable safe food production, and conservation perspectives.
This book, prepared by participants of the European network COST ACTION 810 (1989-93) is the outcome of a meeting held in Switzerland (Einsiedeln, September 29 to October 2, 1993) on the "Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems". COST(Cooperation Scientifique et Technique) Networks were created in 1971 by the Commission of European Communities, and later enlarged to include non-European Member States, to promote pre-competitive scientific and technical research in fields of common interest. During the eighties, COST ACTIONS were launched in bio technological fields, including the network on arbuscular mycorrhizas. Arbuscular mycorrhizas are a universally found symbiosis between plants and certain soil fungi and essential components of soil-plant systems. They act as a major inter face by influencing or regulating resource allocation between abiotic and biotic components of the soil-plant system. Arbuscular mycorrhizas are involved in many key ecosystem processes including nutrient cycling and conservation of soil struc ture, and have been shown to improve plant health through increased protection against abiotic and biotic stresses. Sustainability can be defined as the successful management of resources to satisfy changing human needs while maintaining or enhancing the quality of the environ ment and conserving resources. Increasing environmental degradation and instability, due to anthropogenic activities and in particular the increasing fragility of the soil resource, has led to an increased awareness of the need to develop practices resulting in more sustainable natural and agroecosystems.
The second edition of Mycorrhiza falls into a time period of excep tionally rapid growth in mycorrhizal research. Therefore the edi tors have been most pleased with the decision of the Springer Verlag to revise the first edition and to incorporate the remarkable advances experienced in the mycorrhizal field. The pace of discovery has been particularly fast at the two poles of biological complexity, the molecular events leading to changes in growth and differentiation, as well as the factors regulating the structure and diversity of natural populations and communities. Therefore the most significant changes introduced in the new edition of this book are found within these topics. Not only were many chapters up dated, but also new chapters have replaced existing ones. The individual decisions have not been easy, since valuable contribu tions had to be sacrificed in favour of new aspects; but the authors hope that a highly topical new edition will be of greatest benefit for a rapidly expanding field of research. We welcome comments and critics from readers. Since it was possible again to find leading scientists as contribu tors, we are confident that this revised second edition will stimulate further progress and contribute to a deeper understanding of advances in the mycorrhizal field. We are grateful to the Springer Verlag, especially Dr. Dieter Czeschlik, for his continued interest and active help. Dr. Maja Hilber-Bodmer and Dr.
Recent years have seen extensive research in the molecular underpinnings of symbiotic plant-fungal interactions. Molecular Mycorrhizal Symbiosis is a timely collection of work that will bridge the gap between molecular biology, fungal genomics, and ecology. A more profound understanding of mycorrhizal symbiosis will have broad-ranging impacts on the fields of plant biology, mycology, crop science, and ecology. Molecular Mycorrhizal Symbiosis will open with introductory chapters on the biology, structure and phylogeny of the major types of mycorrhizal symbioses. Chapters then review different molecular mechanisms driving the development and functioning of mycorrhizal systems and molecular analysis of mycorrhizal populations and communities. The book closes with chapters that provide an overall synthesis of field and provide perspectives for future research. Authoritative and timely, Molecular Mycorrhizal Symbiosis, will be an essential reference from those working in plant and fungal biology.
`The fundamental problem the world faces today, is the rapidly increasing pressure of population on the limited resources of the land. To meet the ever increasing demands of expanding populations, agricultural production has been raised through the abundant use of inorganic fertilizers, the adoption of multicropping systems and liberal application of chemical pesticides (fungicides, bactericides, etc. ). Though the use of chemicals has increased the yield dramatically, it has also resulted in the rapid deterioration of land and water resources apart from wastage of scarce resources. This has adversely affected the biological balance and lead to the presence of toxic residues in food, soil and water in addition to imposing economic constraints on developing countries.' (From the Preface) Mycorrhizal Biology addresses the global problem of land degradation and the associated loss of soil productivity and decline in soil quality caused by exploitative farming practices and poor management in developing countries, and the far reaching socio-economic and ecological consequences of its impact on agricultural productivity and the environment. In the light of a need for sustainable development, a new system of productive agriculture, to ensure the efficient management of agricultural inputs for long term high crop productivity with minimum damage to the ecological and socio-economic environment is essential. The management of mycorrhizal fungi will form a significant part of such a system and this work investigates the key association of plant roots with mycorrhizal fungi, known to benefit plants under conditions of nutritional and water stress and pathogen challenge and analyses the developments in our understanding of the genetic loci that govern mycorrhiza formation.