Download Free Mxene Polymer Nanocomposites Via Thiol Based Click Chemistry Book in PDF and EPUB Free Download. You can read online Mxene Polymer Nanocomposites Via Thiol Based Click Chemistry and write the review.

A process for easily fabricating thiol-acrylate and thiol-isocyanate based nanocomposites with well-dispersed two-dimensional titanium carbide (Ti3C2Tz) was explored. Ti3C2Tz produced using the LiF/HCl "clay" method and multilayer Ti3C2Tz etched with 10wt. % HF were dispersed in monomer solutions, which were then cured with highly efficient thiol "click" reactions to form composites. A method for treating HF-etched MXene with isocyanates to improve the dispersion of MXene in the polymer matrix was developed. The efficacy of the surface treatment was measured using diffractive and spectroscopic methods. Synthesized MXene-polymer nanocomposites were investigated for their mechanical and thermal properties over a range of filler concentrations. Keywords: Composites, MXenes, Nanocomposites, Nanomaterials, Surface modification, Thiol click chemistry
MXenes are a new family of two-dimensional (2D) metal carbides, having properties such as metallic conductivity and hydrophilicity. Adding polymer binders/spacers between atomically thin MXene layers or reinforcing polymers with MXenes results in composite films that have excellent flexibility, good tensile and compressive strengths, and electrical conductivity. This book covers all advances in the field of MXene-filled polymer nanocomposites to date, illustrating fabrication and characterization, and specific properties like anti-healing, anti-friction, and microwave absorption. It further covers potential applications like energy conversion, storage systems, antibacterial, and drug delivery. The book features: exclusive material on MXene-based polymer nanocomposites properties and potential applications of polymers upon addition of MXenes the effect of MXenes on various thermoplastic and elastomer polymers a focus on the properties, fabrications methods, and applications of relevant polymer matrices; and extensive coverage of the role of MXenes in polymers This book is aimed at researchers, professionals, and graduate students in material science, polymer engineering, electronic materials, composites, chemical processing, chemical sciences, fire engineering, and biomedicine.
This book contains precisely referenced chapters, emphasizing environment-friendly polymer nanocomposites with basic fundamentals, practicality and alternatives to traditional nanocomposites through detailed reviews of different environmental friendly materials procured from different resources, their synthesis and applications using alternative green approaches. The book aims at explaining basics of eco-friendly polymer nanocomposites from different natural resources and their chemistry along with practical applications which present a future direction in the biomedical, pharmaceutical and automotive industry. The book attempts to present emerging economic and environmentally friendly polymer nanocomposites that are free from side effects studied in the traditional nanocomposites. This book is the outcome of contributions by many experts in the field from different disciplines, with various backgrounds and expertises. This book will appeal to researchers as well as students from different disciplines. The content includes industrial applications and will fill the gap between the research works in laboratory to practical applications in related industries.
This book examines the current state of the art, new challenges, opportunities, and applications in the area of polymer nanocomposites. Special attention has been paid to the processing-morphology-structure-property relationship of the system. Various unresolved issues and new challenges in the field of polymer nanocompostes are discussed. The infl
Advances in Functionalized Polymer Nanocomposites: From Synthesis to Applications presents a detailed review on the synthesis, fundamental chemistry, properties, and applications of these high-performance materials. The introductory chapter provides a brief overview of the various types of organic and inorganic nanofillers used for the synthesis of polymer nanocomposites. Emphasis is placed on their fundamental chemistry, processing methods, functionalization and/or surface modification strategies. The dispersion state and their specific interaction with polymer matrices is also discussed in detail, as well as characterization techniques for functionalized nanofillers and functionalized polymer nanocomposites, and their properties, and applications. The book will be a valuable reference source for scientists, engineers, and postgraduate students, working in the field of polymer science and technology, materials science and engineering, composites, and nanocomposites. Covers fabrication, processing, characterization, and properties of various functionalized polymer nanocomposites Explores usage in energy storage systems, biomedical fields, environmental remediation, catalysis, gas sensing, biosensing, and electromagnetic interference (EMI) shielding Provides information on lifecycle assessment and environmental and health impacts of these materials
Polymer Nanocomposites for Energy Applications Explore the science of polymer nanocomposites and their practical use in energy applications In Polymer Nanocomposites for Energy Applications, a team of distinguished researchers delivers a comprehensive review of the synthesis and characterization of polymer nanocomposites, as well as their applications in the field of energy. Succinct and insightful, the book explores the storage of electrical, magnetic, and thermal energy and hydrogen. It also discusses energy generation by polymer-based solar cells. Finally, the authors present a life cycle analysis of polymer nanocomposites for energy applications and provide four real-world case studies where these materials have been successfully used. Readers will also find: Thorough introductions to the origins and synthesis of polymer materials In-depth discussions of the characterization of polymeric materials, including UV-visible spectroscopy Comprehensive explorations of a wide variety of polymer material applications, including in biotechnology and for soil remediation Fulsome presentations of polymer nanocomposites and their use in energy storage systems Perfect for materials and engineering scientists and polymer chemists, Polymer Nanocomposites for Energy Applications will also earn a place in the libraries of professionals working in the chemical industry.
MXene Reinforced Polymer Composites This volume is the first book to comprehensively explore the various fabrication and processing strategies for MXene-reinforced polymer composites including detailed characterizations and their numerous applications. The book systematically provides a critical discussion on the synthesis and processing methods, structure, properties, characterizations, surface chemistry, and functionalization strategies of MXenes and their utilization as efficient nanofiller into various polymer matrices to form high-performance polymer composites. The book provides a deep insight into the recent state-of-the-art progress in MXene-reinforced polymer composites, discussing several critical issues and providing suggestions for future work. The key features of this book are: Providing fundamental information and a clear understanding of the synthesis, processing, compositions, structure, and physicochemical properties of MXenes; Presenting a comprehensive review of several recent accomplishments and key scientific and technological challenges in developing MXene-reinforced polymer composites; Exploring various processing and fabrication methods of MXene-reinforced polymer composites; Providing deep insight into fundamental properties and various emerging applications of MXene-reinforced polymer/composites. Audience Researchers, postgraduates, and industry engineers working in materials science, polymer science, materials engineering, and nanotechnology, as well as technologists in electronic, electrical, and biomedical industries.
The aim of the present edited book is to furnish scientific information about manufacturing, properties, and application of clay and carbon based polymer nanocomposites. It can be used as handbook for undergraduate and post graduate courses (for example material science and engineering, polymer science and engineering, rubber technology, manufacturing engineering, etc.) as well as as reference book for research fellows and professionals. Polymer nanocomposites have received outstanding importance in the present decade because of their broad range of high-performance applications in various areas of engineering and technology due to their special material properties. A great interest is dedicated to nanofiller based polymeric materials, which exhibit excellent enhancement in macroscopic material properties (mechanical, thermal, dynamic mechanical, electrical and many more) at very low filler contents and can therefore be used for the development of next-generation composite materials.
Two-Dimensional Nanomaterials-Based Polymer Nanocomposites This book presents an extensive discussion on fundamental chemistry, classifications, structure, unique properties, and applications of various 2D nanomaterials. The advent of graphene in 2004 has brought tremendous attention to two-dimensional (2D) nanomaterials. Lately, this has prompted researchers to explore new 2D nanomaterials for cutting-edge research in diverse fields. Polymer nanocomposites (PNCs) represent a fascinating group of novel materials that exhibit intriguing properties. The unique combination of polymer and nanomaterial not only overcomes the limitations of polymer matrices, but also changes their structural, morphological, and physicochemical properties thereby broadening their application potential. The book, comprising 22 chapters, provides a unique and detailed study of the process involved in the synthesis of 2D nanomaterials, modification strategies of 2D nanomaterials, and numerous applications of 2D nanomaterials-based polymer nanocomposites. The book also emphasizes the existing challenges in the functionalization and exfoliation of 2D nanomaterials as well as the chemical, structural, electrical, thermal, mechanical, and biological properties of 2D nanomaterials-based polymer nanocomposites. The key features of this book are: Provides fundamental information and a clear understanding of synthesis, processing methods, structure and physicochemical properties of 2D materials-based polymer nanocomposites; Presents a comprehensive review of several recent accomplishments and key scientific and technological challenges in developing 2D materials-based polymer nanocomposites; Explores various processing and fabrication methods and emerging applications of 2D materials-based polymer nanocomposites. Audience Engineers and polymer scientists in the electrical, coatings, and biomedical industries will find this book very useful. Advanced students in materials science and polymer science will find it a fount of information.
This book contains precisely referenced chapters, emphasizing environment-friendly polymer nanocomposites with basic fundamentals, practicality and alternatives to traditional nanocomposites through detailed reviews of different environmental friendly materials procured from different resources, their synthesis and applications using alternative green approaches. The book aims at explaining basics of eco-friendly polymer nanocomposites from different natural resources and their chemistry along with practical applications which present a future direction in the biomedical, pharmaceutical and automotive industry. The book attempts to present emerging economic and environmentally friendly polymer nanocomposites that are free from side effects studied in the traditional nanocomposites. This book is the outcome of contributions by many experts in the field from different disciplines, with various backgrounds and expertises. This book will appeal to researchers as well as students from different disciplines. The content includes industrial applications and will fill the gap between the research works in laboratory to practical applications in related industries.