Download Free Mutation Randomness And Evolution Book in PDF and EPUB Free Download. You can read online Mutation Randomness And Evolution and write the review.

What does it mean to say that mutation is random? How does mutation influence evolution? Are mutations merely the raw material for selection to shape adaptations? The author draws on a detailed knowledge of mutational mechanisms to argue that the randomness doctrine is best understood, not as a fact-based conclusion, but as the premise of a neo-Darwinian research program focused on selection. The successes of this research program created a blind spot - in mathematical models and verbal theories of causation - that has stymied efforts to re-think the role of variation. However, recent theoretical and empirical work shows that mutational biases can and do influence the course of evolution, including adaptive evolution, through a first come, first served mechanism. This thought-provoking book cuts through the conceptual tangle at the intersection of mutation, randomness, and evolution, offering a fresh, far-reaching, and testable view of the role of variation as a dispositional evolutionary factor. The arguments will be accessible to philosophers and historians with a serious interest in evolution, as well as to researchers and advanced students of evolution focused on molecules, microbes, evo-devo, and population genetics.
John Tyler Bonner here challenges a central tenet of evolutionary biology.
The purpose of this book is to present a new theory of mutation-driven evolution, which is based on recent advances in genomics and evolutionary developmental biology. This theory asserts that the driving force of evolution is mutation and natural selection is of secondary importance.
This illuminating volume explores the effects of chance on evolution, covering diverse perspectives from scientists, philosophers, and historians. The evolution of species, from single-celled organisms to multicellular animals and plants, is the result of a long and highly chancy history. But how profoundly has chance shaped life on earth? And what, precisely, do we mean by chance? Bringing together biologists, philosophers of science, and historians of science, Chance in Evolution is the first book to untangle the far-reaching effects of chance, contingency, and randomness on the evolution of life. The book begins by placing chance in historical context, starting with the ancients and moving through Darwin to contemporary biology. It documents the shifts in our understanding of chance as Darwin’s theory of evolution developed into the modern synthesis, and how the acceptance of chance in Darwinian theory affected theological resistance to it. Other chapters discuss how chance relates to the concepts of genetic drift, mutation, and parallel evolution—as well as recent work in paleobiology and the experimental evolution of microbes. By engaging in collaboration across biology, history, philosophy, and theology, this book offers a comprehensive overview both of the history of chance in evolution and of our current understanding of the impact of chance on life.
What does it mean to say that mutation is random? How does mutation influence evolution? Are mutations merely the raw material for selection to shape adaptations? The author draws on a detailed knowledge of mutational mechanisms to argue that the randomness doctrine is best understood, not as a fact-based conclusion, but as the premise of a neo-Darwinian research program focused on selection. The successes of this research program created a blind spot - in mathematical models and verbal theories of causation - that has stymied efforts to re-think the role of variation. However, recent theoretical and empirical work shows that mutational biases can and do influence the course of evolution, including adaptive evolution, through a first come, first served mechanism. This thought-provoking book cuts through the conceptual tangle at the intersection of mutation, randomness, and evolution, offering a fresh, far-reaching, and testable view of the role of variation as a dispositional evolutionary factor. The arguments will be accessible to philosophers and historians with a serious interest in evolution, as well as to researchers and advanced students of evolution focused on molecules, microbes, evo-devo, and population genetics.
This book proposes an important new paradigm for understanding biological evolution. Shapiro demonstrates why traditional views of evolution are inadequate to explain the latest evidence, and presents an alternative. His information- and systems-based approach integrates advances in symbiogenesis, epigenetics, and saltationism, and points toward an emerging synthesis of physical, information, and biological sciences.
Motoo Kimura, as founder of the neutral theory, is uniquely placed to write this book. He first proposed the theory in 1968 to explain the unexpectedly high rate of evolutionary change and very large amount of intraspecific variability at the molecular level that had been uncovered by new techniques in molecular biology. The theory - which asserts that the great majority of evolutionary changes at the molecular level are caused not by Darwinian selection but by random drift of selectively neutral mutants - has caused controversy ever since. This book is the first comprehensive treatment of this subject and the author synthesises a wealth of material - ranging from a historical perspective, through recent molecular discoveries, to sophisticated mathematical arguments - all presented in a most lucid manner.
"Fascinating and exhilarating—Sean B. Carroll at his very best."—Bill Bryson, author of The Body: A Guide for Occupants From acclaimed writer and biologist Sean B. Carroll, a rollicking, awe-inspiring story of the surprising power of chance in our lives and the world Why is the world the way it is? How did we get here? Does everything happen for a reason or are some things left to chance? Philosophers and theologians have pondered these questions for millennia, but startling scientific discoveries over the past half century are revealing that we live in a world driven by chance. A Series of Fortunate Events tells the story of the awesome power of chance and how it is the surprising source of all the beauty and diversity in the living world. Like every other species, we humans are here by accident. But it is shocking just how many things—any of which might never have occurred—had to happen in certain ways for any of us to exist. From an extremely improbable asteroid impact, to the wild gyrations of the Ice Age, to invisible accidents in our parents' gonads, we are all here through an astonishing series of fortunate events. And chance continues to reign every day over the razor-thin line between our life and death. This is a relatively small book about a really big idea. It is also a spirited tale. Drawing inspiration from Monty Python, Kurt Vonnegut, and other great thinkers, and crafted by one of today's most accomplished science storytellers, A Series of Fortunate Events is an irresistibly entertaining and thought-provoking account of one of the most important but least appreciated facts of life.
A thought-provoking exploration of deleterious mutations in the human genome and their effects on human health and wellbeing Despite all of the elaborate mechanisms that a cell employs to handle its DNA with the utmost care, a newborn human carries about 100 new mutations, originated in their parents, about 10 of which are deleterious. A mutation replacing just one of the more than three billion nucleotides in the human genome may lead to synthesis of a dysfunctional protein, and this can be inconsistent with life or cause a tragic disease. Several percent of even young people suffer from diseases that are caused, exclusively or primarily, by pre ]existing and new mutations in their genomes, including both a wide variety of genetically simple Mendelian diseases and diverse complex diseases such as birth anomalies, diabetes, and schizophrenia. Milder, but still substantial, negative effects of mutations are even more pervasive. As of now, we possess no means of reducing the rate at which mutations appear spontaneously. However, the recent flood of genomic data made possible by next-generation methods of DNA sequencing, enabled scientists to explore the impacts of deleterious mutations on humans with previously unattainable precision and begin to develop approaches to managing them. Written by a leading researcher in the field of evolutionary genetics, Crumbling Genome reviews the current state of knowledge about deleterious mutations and their effects on humans for those in the biological sciences and medicine, as well as for readers with only a general scientific literacy and an interest in human genetics. Provides an extensive introduction to the fundamentals of evolutionary genetics with an emphasis on mutation and selection Discusses the effects of pre-existing and new mutations on human genotypes and phenotypes Provides a comprehensive review of the current state of knowledge in the field and considers crucial unsolved problems Explores key ethical, scientific, and social issues likely to become relevant in the near future as the modification of human germline genotypes becomes technically feasible Crumbling Genome is must-reading for students and professionals in human genetics, genomics, bioinformatics, evolutionary biology, and biological anthropology. It is certain to have great appeal among all those with an interest in the links between genetics and evolution and how they are likely to influence the future of human health, medicine, and society.
The Arthur M. Sackler Colloquia of the National Academy of Sciences address scientific topics of broad and current interest, cutting across the boundaries of traditional disciplines. Each year, four or five such colloquia are scheduled, typically two days in length and international in scope. Colloquia are organized by a member of the Academy, often with the assistance of an organizing committee, and feature presentations by leading scientists in the field and discussions with a hundred or more researchers with an interest in the topic. Colloquia presentations are recorded and posted on the National Academy of Sciences Sackler colloquia website and published on CD-ROM. These Colloquia are made possible by a generous gift from Mrs. Jill Sackler, in memory of her husband, Arthur M. Sackler.