Download Free Mutant P53 In Cancer Progression And Personalized Therapeutic Treatments Book in PDF and EPUB Free Download. You can read online Mutant P53 In Cancer Progression And Personalized Therapeutic Treatments and write the review.

This work serves as an introduction to the applications of molecular biology in the field of oncology. It provides a basic understanding of the genetic events involved in fully developed human cancer, including research into inherited and acquired gene defects initiating new neoplasms and the subsequent genetic alterations involved in tumor progression. Some of the specific topics explored include gene control, molecular therapy and antibodies, drug resistance, growth factors and receptors, and tumor biology. While intended primarily as an advanced text for oncologists, postgraduate molecular geneticists and molecular biologists, the book will certainly be of interest to other researchers who frequently encounter cancer in their practice.
Genetic alterations in cancer, in addition to being the fundamental drivers of tumorigenesis, can give rise to a variety of metabolic adaptations that allow cancer cells to survive and proliferate in diverse tumor microenvironments. This metabolic flexibility is different from normal cellular metabolic processes and leads to heterogeneity in cancer metabolism within the same cancer type or even within the same tumor. In this book, we delve into the complexity and diversity of cancer metabolism, and highlight how understanding the heterogeneity of cancer metabolism is fundamental to the development of effective metabolism-based therapeutic strategies. Deciphering how cancer cells utilize various nutrient resources will enable clinicians and researchers to pair specific chemotherapeutic agents with patients who are most likely to respond with positive outcomes, allowing for more cost-effective and personalized cancer therapeutic strategies.
Written and edited by internationally recognised leaders in the field, the new edition of the Oxford Textbook of Oncology has been fully revised and updated, taking into consideration the advancements in each of the major therapeutic areas, and representing the multidisciplinary management of cancer. Structured in six sections, the book provides an accessible scientific basis to the key topics of oncology, examining how cancer cells grow and function, as well as discussing the aetiology of cancer, and the general principles governing modern approaches to oncology treatment. The book examines the challenges presented by the treatment of cancer on a larger scale within population groups, and the importance of recognising and supporting the needs of individual patients, both during and after treatment. A series of disease-oriented, case-based chapters, ranging from acute leukaemia to colon cancer, highlight the various approaches available for managing the cancer patient, including the translational application of cancer science in order to personalise treatment. The advice imparted in these cases has relevance worldwide, and reflects a modern approach to cancer care. The Oxford Textbook of Oncology provides a comprehensive account of the multiple aspects of best practice in the discipline, making it an indispensable resource for oncologists of all grades and subspecialty interests.
A FRESH EXAMINATION OF PRECISION MEDICINE'S INCREASINGLY PROMINENT ROLE IN THE FIELD OF ONCOLOGY Precision medicine takes into account each patient's specific characteristics and requirements to arrive at treatment plans that are optimized towards the best possible outcome. As the field of oncology continues to advance, this tailored approach is becoming more and more prevalent, channelling data on genomics, proteomics, metabolomics and other areas into new and innovative methods of practice. Precision Medicine in Oncology draws together the essential research driving the field forward, providing oncology clinicians and trainees alike with an illuminating overview of the technology and thinking behind the breakthroughs currently being made. Topics covered include: Biologically-guided radiation therapy Informatics for precision medicine Molecular imaging Biomarkers for treatment assessment Big data Nanoplatforms Casting a spotlight on this emerging knowledge base and its impact upon the management of tumors, Precision Medicine in Oncology opens up new possibilities and ways of working not only for oncologists, but also for molecular biologists, radiologists, medical geneticists, and others.
p53 has emerged as a key tumor suppressor and important target for novel cancer therapy. This book, written by world-leading p53 researchers including many of those who have shaped the field over the past 25 years, provides unique insights into the progress of the field and the prospects for better cancer diagnosis and therapy in the future.
As with other books in the Molecular Pathology Library Series, Molecular Pathology of Lung Cancer bridges the gap between the molecular specialist and the clinical practitioner, including the surgical pathologist who now has a key role in decisions regarding molecular targeted therapy for lung cancer. Molecular Pathology of Lung Cancer provides the latest information and current insights into the molecular basis for lung cancer, including precursor and preinvasive lesions, molecular diagnosis, molecular targeted therapy, molecular prognosis, molecular radiology and related fields for lung cancer generally and for the specific cell types. As many fundamental concepts about lung cancer have undergone revision in only the past few years, this book will likely be the first to comprehensively cover the new molecular pathology of lung cancer. It provides a foundation in this field for pathologists, medical oncologists, radiation oncologists, thoracic surgeons, thoracic radiologists and their trainees, physician assistants, and nursing staff.
The book addresses controversies related to the origins of cancer and provides solutions to cancer management and prevention. It expands upon Otto Warburg's well-known theory that all cancer is a disease of energy metabolism. However, Warburg did not link his theory to the "hallmarks of cancer" and thus his theory was discredited. This book aims to provide evidence, through case studies, that cancer is primarily a metabolic disease requring metabolic solutions for its management and prevention. Support for this position is derived from critical assessment of current cancer theories. Brain cancer case studies are presented as a proof of principle for metabolic solutions to disease management, but similarities are drawn to other types of cancer, including breast and colon, due to the same cellular mutations that they demonstrate.
One of The Wall Street Journal’s 10 Best Nonfiction Books of the Year Philadelphia, 1959: A scientist scrutinizing a single human cell under a microscope detects a missing piece of DNA. That scientist, David Hungerford, had no way of knowing that he had stumbled upon the starting point of modern cancer research— the Philadelphia chromosome. It would take doctors and researchers around the world more than three decades to unravel the implications of this landmark discovery. In 1990, the Philadelphia chromosome was recognized as the sole cause of a deadly blood cancer, chronic myeloid leukemia, or CML. Cancer research would never be the same. Science journalist Jessica Wapner reconstructs more than forty years of crucial breakthroughs, clearly explains the science behind them, and pays tribute—with extensive original reporting, including more than thirty-five interviews—to the dozens of researchers, doctors, and patients with a direct role in this inspirational story. Their curiosity and determination would ultimately lead to a lifesaving treatment unlike anything before it. The Philadelphia Chromosome chronicles the remarkable change of fortune for the more than 70,000 people worldwide who are diagnosed with CML each year. It is a celebration of a rare triumph in the battle against cancer and a blueprint for future research, as doctors and scientists race to uncover and treat the genetic roots of a wide range of cancers.