Download Free Music A Mathematical Offering Book in PDF and EPUB Free Download. You can read online Music A Mathematical Offering and write the review.

This book explores the interaction between music and mathematics including harmony, symmetry, digital music and perception of sound.
Musical Mathematics is the definitive tome for the adventurous musician. Integrating mathematics, music history, and hands-on experience, this volume serves as a comprehensive guide to the tunings and scales of acoustic instruments from around the world. Author, composer, and builder Cris Forster illuminates the mathematical principles of acoustic music, offering practical information and new discoveries about both traditional and innovative instruments.With this knowledge readers can improve, or begin to build, their own instruments inspired by Forster's creationsshown in 16 color plates. For those ready to step outside musical conventions and those whose curiosity about the science of sound is never satisfied, Musical Mathematics is the map to a new musical world.
Accompanying CD-ROM includes musical selections.
In this groundbreaking book, Tymoczko uses contemporary geometry to provide a new framework for thinking about music, one that emphasizes the commonalities among styles from Medieval polyphony to contemporary jazz.
The year’s finest mathematical writing from around the world This annual anthology brings together the year’s finest mathematics writing from around the world. Featuring promising new voices alongside some of the foremost names in the field, The Best Writing on Mathematics 2018 makes available to a wide audience many pieces not easily found anywhere else—and you don’t need to be a mathematician to enjoy them. These essays delve into the history, philosophy, teaching, and everyday aspects of math, offering surprising insights into its nature, meaning, and practice—and taking readers behind the scenes of today’s hottest mathematical debates. James Grime shows how to build subtly mischievous dice for playing slightly unfair games and Michael Barany traces how our appreciation of the societal importance of mathematics has developed since World War II. In other essays, Francis Su extolls the inherent values of learning, doing, and sharing mathematics, and Margaret Wertheim takes us on a mathematical exploration of the mind and the world—with glimpses at science, philosophy, music, art, and even crocheting. And there’s much, much more. In addition to presenting the year’s most memorable math writing, this must-have anthology includes an introduction by the editor and a bibliography of other notable pieces on mathematics. This is a must-read for anyone interested in where math has taken us—and where it is headed.
Max Tegmark leads us on an astonishing journey through past, present and future, and through the physics, astronomy and mathematics that are the foundation of his work, most particularly his hypothesis that our physical reality is a mathematical structure and his theory of the ultimate multiverse. In a dazzling combination of both popular and groundbreaking science, he not only helps us grasp his often mind-boggling theories, but he also shares with us some of the often surprising triumphs and disappointments that have shaped his life as a scientist. Fascinating from first to last—this is a book that has already prompted the attention and admiration of some of the most prominent scientists and mathematicians.
Exploring Musical Spaces is a comprehensive synthesis of mathematical techniques in music theory, written with the aim of making these techniques accessible to music scholars without extensive prior training in mathematics. The book adopts a visual orientation, introducing from the outset a number of simple geometric models--the first examples of the musical spaces of the book's title--depicting relationships among musical entities of various kinds such as notes, chords, scales, or rhythmic values. These spaces take many forms and become a unifying thread in initiating readers into several areas of active recent scholarship, including transformation theory, neo-Riemannian theory, geometric music theory, diatonic theory, and scale theory. Concepts and techniques from mathematical set theory, graph theory, group theory, geometry, and topology are introduced as needed to address musical questions. Musical examples ranging from Bach to the late twentieth century keep the underlying musical motivations close at hand. The book includes hundreds of figures to aid in visualizing the structure of the spaces, as well as exercises offering readers hands-on practice with a diverse assortment of concepts and techniques.
This textbook provides both profound technological knowledge and a comprehensive treatment of essential topics in music processing and music information retrieval. Including numerous examples, figures, and exercises, this book is suited for students, lecturers, and researchers working in audio engineering, computer science, multimedia, and musicology. The book consists of eight chapters. The first two cover foundations of music representations and the Fourier transform—concepts that are then used throughout the book. In the subsequent chapters, concrete music processing tasks serve as a starting point. Each of these chapters is organized in a similar fashion and starts with a general description of the music processing scenario at hand before integrating it into a wider context. It then discusses—in a mathematically rigorous way—important techniques and algorithms that are generally applicable to a wide range of analysis, classification, and retrieval problems. At the same time, the techniques are directly applied to a specific music processing task. By mixing theory and practice, the book’s goal is to offer detailed technological insights as well as a deep understanding of music processing applications. Each chapter ends with a section that includes links to the research literature, suggestions for further reading, a list of references, and exercises. The chapters are organized in a modular fashion, thus offering lecturers and readers many ways to choose, rearrange or supplement the material. Accordingly, selected chapters or individual sections can easily be integrated into courses on general multimedia, information science, signal processing, music informatics, or the digital humanities.
Collects six short illustrated volumes covering topics in mathematics, physics, chemistry, biology, evolution, and astronomy.
This textbook is a first introduction to mathematics for music theorists, covering basic topics such as sets and functions, universal properties, numbers and recursion, graphs, groups, rings, matrices and modules, continuity, calculus, and gestures. It approaches these abstract themes in a new way: Every concept or theorem is motivated and illustrated by examples from music theory (such as harmony, counterpoint, tuning), composition (e.g., classical combinatorics, dodecaphonic composition), and gestural performance. The book includes many illustrations, and exercises with solutions.