Download Free Muonium Antimuonium Oscillations In An Extended Minimal Supersymmetric Standard Model Book in PDF and EPUB Free Download. You can read online Muonium Antimuonium Oscillations In An Extended Minimal Supersymmetric Standard Model and write the review.

This innovative work investigated two models where the muonium-antimuonium oscillation process was mediated by massive Majorana neutrinos and sneutrinos. First, we modified the Standard Model only by the inclusion of singlet right-handed neutrinos and allowing for general renormalizable interactions producing neutrino masses and mixing. The see-saw mechanism was employed to explain the smallness of the observed neutrino masses. A lower bound on the righthanded neutrino mass was constructed using the experimental limits set by the nonobservation of the muonium-antimuonium oscillation process. Second, we modified the Minimal Supersymmetric Standard Model by the inclusion of three right-handed neutrino superfields. The experimental result of the muonium-antimuonium oscillation process generated a lower bound on the ratio of the two Higgs field VEVs. This work helps to set up relationships between the experimental result of the muonium-antimuonium oscillation process and the model parameters in two specific models. Further improvement of the experiment in the future can generate more stringent bounds on the model parameters using the procedure developed by this work.
High Energy Physics 99 contains the 18 invited plenary presentations and 250 contributions to parallel sessions presented at the International Europhysics Conference on High Energy Physics. The book provides a comprehensive survey of the latest developments in high energy physics. Topics discussed include hard high energy, structure functions, soft interactions, heavy flavor, the standard model, hadron spectroscopy, neutrino masses, particle astrophysics, field theory, and detector development.
These proceedings consist of plenary rapporteur talks covering topics of major interest to the high energy physics community and parallel sessions papers which describe recent research results and future plans.
Although particle accelerators are the book's main thrust, it offers a broad synoptic description of beams which applies to a wide range of other devices such as low-energy focusing and transport systems and high-power microwave sources. Develops material from first principles, basic equations and theorems in a systematic way. Assumptions and approximations are clearly indicated. Discusses underlying physics and validity of theoretical relationships, design formulas and scaling laws. Features a significant amount of recent work including image effects and the Boltzmann line charge density profiles in bunched beams.
Atomic hydrogen, the simplest of all stable atoms, has been a challenge to spectroscopists and theoreticians for many years. Here, as in similar systems like positronium, muonium and possibly helium, the accuracy of theoretical predictions is comparable to that of experimental measurements. Hence exciting confrontations are possible. This together with expected large experimental improvements explains the strong interest in the symposium held in Pisa in June-July 1988. The resulting book completely covers the precision spectroscopy of atomic hydrogen and hydrogen-like systems, and also discusses aspects of QED and the influence of strong fields.
High precision measurements of weak neutral current and charged current processes and of the properties of the Z and W bosons have established the standard electroweak model as correct down to a distance scale of 10-16 cm, and are a sensitive probe of possible underlying physics. In this book, all aspects of the program are considered in detail, including the structure of the standard model, radiative corrections, high precision experiments, and their implications. The major classes of experiments are surveyed, covering the experiments themselves, the data analysis, results, and prospects.This volume is a detailed reference for theoretical and experimental researchers, as well as an introductory text for advanced students.
For more than a century, studies of atomic hydrogen have been a rich source of scientific discoveries. These began with the Balmer series in 1885 and the early quantum theories of the atom, and later included the development of QED and the first successful gauge field theory. Today, hydrogen and its relatives continue to provide new fundamental information, as witnessed by the contributions to this book. The printed volume contains invited reviews on the spectroscopy of hydrogen, muonium, positronium, few-electron ions and exotic atoms, together with related topics such as frequency metrology and the determination of fundamental constants. The accompanying CD contains, in addition to these reviews, a further 40 contributed papers also presented at the conference "Hydrogen Atom 2" held in summer 2000. Finally, to facilitate a historical comparison, the CD also contains the proceedings of the first "Hydrogen Atom" conference of 1988. The book includes a foreword by Norman F. Ramsey.