Download Free Municipal Solid Waste Energy Conversion In Developing Countries Book in PDF and EPUB Free Download. You can read online Municipal Solid Waste Energy Conversion In Developing Countries and write the review.

MUNICIPAL SOLID WASTE TO ENERGY CONVERSION PROCESSES A TECHNICAL AND ECONOMIC REVIEW OF EMERGING WASTE DISPOSAL TECHNOLOGIES Intended for a wide audience ranging from engineers and academics to decision-makers in both the public and private sectors, Municipal Solid Waste to Energy Conversion Processes: Economic, Technical, and Renewable Comparisons reviews the current state of the solid waste disposal industry. It details how the proven plasma gasification technology can be used to manage Municipal Solid Waste (MSW) and to generate energy and revenues for local communities in an environmentally safe manner with essentially no wastes. Beginning with an introduction to pyrolysis/gasification and combustion technologies, the book provides many case studies on various waste-to-energy (WTE) technologies and creates an economic and technical baseline from which all current and emerging WTE technologies could be compared and evaluated. Topics include: Pyrolysis/gasification technology, the most suitable and economically viable approach for the management of wastes Combustion technology Other renewable energy resources including wind and hydroelectric energy Plasma economics Cash flows as a revenue source for waste solids-to-energy management Plant operations, with an independent case study of Eco-Valley plant in Utashinai, Japan Extensive case studies of garbage to liquid fuels, wastes to electricity, and wastes to power ethanol plants illustrate how currently generated MSW and past wastes in landfills can be processed with proven plasma gasification technology to eliminate air and water pollution from landfills.
Increasing global consumerism and population has led to an increase in the levels of waste produced. Waste to energy (WTE) conversion technologies can be employed to convert residual wastes into clean energy, rather than sending these wastes directly to landfill. Waste to energy conversion technology explores the systems, technology and impacts of waste to energy conversion.Part one provides an introduction to WTE conversion and reviews the waste hierarchy and WTE systems options along with the corresponding environmental, regulatory and techno-economic issues facing this technology. Part two goes on to explore further specific aspects of WTE systems, engineering and technology and includes chapters on municipal solid waste (MSW) combustion plants and WTE systems for district heating. Finally, part three highlights pollution control systems for waste to energy technologies.Waste to energy conversion technology is a standard reference book for plant managers, building engineers and consultants requiring an understanding of WTE technologies, and researchers, scientists and academics interested in the field. - Reviews the waste hierarchy and waste to energy systems options along with the environmental and social impact of WTE conversion plants - Explores the engineering and technology behind WTE systems including considerations of municipal solid waste (MSW) its treatment, combustion and gasification - Considers pollution control systems for WTE technologies including the transformation of wast combustion facilities from major polluters to pollution sinks
Municipal Solid Waste Energy Conversion in Emerging Countries: Technologies, Best Practices, Challenges and Policy presents contributions from authors from India, Argentina, Brazil, Colombia, Ecuador, Mexico, South Africa and China who come together to present the most reliable technologies for the energy conversion of municipal solid waste. The book addresses existing economic and policy scenarios and possible pathways to increase energy access and reduce the negative impacts of inadequate disposal. The book's authors discuss anaerobic digestion and other MSW conversion technologies, such as incineration and gasification. The environmental and social impacts of their introduction in small villages in emerging countries is also explored. Due to its focus on local authors and its pragmatic approach, this book is indispensable for bioenergy researchers and practitioners in emerging economies, as well as researchers, graduate students and professionals interested in developing waste to energy technology that can be implemented in those regions. It is also particularly useful to professionals interested in energy policy and economics, due to its assessment of policy and recommendations. - Explores the opportunities and challenges for municipal solid waste to energy technology implementation in emerging economies, such as Brazil, India, South Africa and China - Presents a detailed and updated overview of the commercial technologies available in these countries and their economic, environmental and social aspects - Includes case studies which highlight best practices and successful local experiences - Examines current economics and policy barriers for these technologies
Solid waste management issues, technologies and challenges are dynamic. More so, in developing and transitory nations in Asia. This book, written by Asian experts in solid waste management, explores the current situation in Asian countries including Pacific Islands. There are not many technical books of this kind, especially dedicated to this region of the world. The chapters form a comprehensive, coherent investigation in municipal solid waste (MSW) management, including, definitions used, generation, sustainable waste management system, legal framework and impacts on global warming. Several case studies from Asian nations are included to exemplify the real situation experienced. Discussions on MSW policy in these countries and their impacts on waste management and minimization (if any) are indeed an eye-opener. Undoubtedly, this book would be a pioneer in revealing the latest situation in the Asian region, which includes two of the world’s most dynamic nations in the economic growth. It is greatly envisaged to form an excellent source of reference in MSW management in Asia and Pacific Islands. This book will bridge the wide gap in available information between the developed and transitory/developing nations.
A rapidly growing population, industrialization, modernization, luxury life style, and overall urbanization are associated with the generation of enhanced wastes. The inadequate management of the ever-growing amount of waste has degraded the quality of the natural resources on a regional, state, and country basis, and consequently threatens public health as well as global environmental security. Therefore, there is an existent demand for the improvement of sustainable, efficient, and low-cost technologies to monitor and properly manage the huge quantities of waste and convert these wastes into energy sources. Innovative Waste Management Technologies for Sustainable Development is an essential reference source that discusses management of different types of wastes and provides relevant theoretical frameworks about new waste management technologies for the control of air, water, and soil pollution. This publication also explores the innovative concept of waste-to-energy and its application in safeguarding the environment. Featuring research on topics such as pollution management, vermicomposting, and crude dumping, this book is ideally designed for environmentalists, policymakers, professionals, researchers, scientists, industrialists, and environmental agencies.
"The authors have provided all the elements required for complete understanding of the basic concepts in heat recovery and water minimization in chemical and related processes, and followed these with carefully selected and developed problems and solutions in order to ensure that the concepts delivered can be applied." Simon Perry, The University of Manchester. This graduate textbook covers fundamentals of the key areas of Process Integration and Intensification for intra-process heat recovery (Heat Integration), inter-process heat recovery and cogeneration (Total Site) as well as water conservation. Step by step working sessions are illustrated for deeper understanding of the taught materials. The textbook also provides a wealth of pointers as well as further information for readers to acquire more extensive materials on the diverse industrial applications and the latest development trends in Process Integration and Intensification. It is addressed to graduate students as well as professionals to help the effectively application of Process Integration and Intensification in plant design and operation.
Solid waste management affects every person in the world. By 2050, the world is expected to increase waste generation by 70 percent, from 2.01 billion tonnes of waste in 2016 to 3.40 billion tonnes of waste annually. Individuals and governments make decisions about consumption and waste management that affect the daily health, productivity, and cleanliness of communities. Poorly managed waste is contaminating the world’s oceans, clogging drains and causing flooding, transmitting diseases, increasing respiratory problems, harming animals that consume waste unknowingly, and affecting economic development. Unmanaged and improperly managed waste from decades of economic growth requires urgent action at all levels of society. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 aggregates extensive solid aste data at the national and urban levels. It estimates and projects waste generation to 2030 and 2050. Beyond the core data metrics from waste generation to disposal, the report provides information on waste management costs, revenues, and tariffs; special wastes; regulations; public communication; administrative and operational models; and the informal sector. Solid waste management accounts for approximately 20 percent of municipal budgets in low-income countries and 10 percent of municipal budgets in middle-income countries, on average. Waste management is often under the jurisdiction of local authorities facing competing priorities and limited resources and capacities in planning, contract management, and operational monitoring. These factors make sustainable waste management a complicated proposition; most low- and middle-income countries, and their respective cities, are struggling to address these challenges. Waste management data are critical to creating policy and planning for local contexts. Understanding how much waste is generated—especially with rapid urbanization and population growth—as well as the types of waste generated helps local governments to select appropriate management methods and plan for future demand. It allows governments to design a system with a suitable number of vehicles, establish efficient routes, set targets for diversion of waste, track progress, and adapt as consumption patterns change. With accurate data, governments can realistically allocate resources, assess relevant technologies, and consider strategic partners for service provision, such as the private sector or nongovernmental organizations. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 provides the most up-to-date information available to empower citizens and governments around the world to effectively address the pressing global crisis of waste. Additional information is available at http://www.worldbank.org/what-a-waste.
Through Waste-to-Energy (WtE) technology, plants use waste as a renewable fuel to co-produce electricity, heating, and cooling for urban utilization. This professional book presents the latest developments in WtE technologies and their global applications. The first part of the book covers thermal treatment technologies, including combustion, novel gasification, plasma gasification, and pyrolysis. It then examines 35 real-world WtE case studies from around the world, analyzing technical information behind planning, execution, goals, and national strategies. Results through the years show the benefits of the technology through the life cycle of the products. The book also examines financial and environmental aspects.