Download Free Multivariate Analysis In Community Ecology Book in PDF and EPUB Free Download. You can read online Multivariate Analysis In Community Ecology and write the review.

A full description of computer-based methods of analysis used to define and solve ecological problems. Multivariate techniques permit summary of complex sets of data and allow investigation of many problems which cannot be tackled experimentally because of practical restraints.
Interactions between species are of fundamental importance to all living systems and the framework we have for studying these interactions is community ecology. This is important to our understanding of the planets biological diversity and how species interactions relate to the functioning of ecosystems at all scales. Species do not live in isolation and the study of community ecology is of practical application in a wide range of conservation issues. The study of ecological community data involves many methods of analysis. In this book you will learn many of the mainstays of community analysis including: diversity, similarity and cluster analysis, ordination and multivariate analyses. This book is for undergraduate and postgraduate students and researchers seeking a step-by-step methodology for analysing plant and animal communities using R and Excel. Microsoft's Excel spreadsheet is virtually ubiquitous and familiar to most computer users. It is a robust program that makes an excellent storage and manipulation system for many kinds of data, including community data. The R program is a powerful and flexible analytical system able to conduct a huge variety of analytical methods, which means that the user only has to learn one program to address many research questions. Its other advantage is that it is open source and therefore completely free. Novel analytical methods are being added constantly to the already comprehensive suite of tools available in R. Mark Gardener is both an ecologist and an analyst. He has worked in a range of ecosystems around the world and has been involved in research across a spectrum of community types. His knowledge of R is largely self-taught and this gives him insight into the needs of students learning to use R for complicated analyses.
Analysis of Ecological Communities offers a rationale and guidance for selecting appropriate, effective, analytical methods in community ecology. The book is suitable as a textbook and reference book on methods for multivariate analysis of ecological communities and their environments. The book covers distance measures, data transformation, outlier analysis, coordination, cluster analysis, PCA RA, CA, DCA, NMS, NMS, CCA, Bray-Curtis, MRPP, Mantel test, discriminant analysis, twinspan, classification and regression trees, structural equation modeling, and more. It also includes brief treatments of community sampling and diversity measures. The 304 page book is richly illustrated. It provides many examples from the literature and demonstrations of basic principles with simulated and real data sets.
La diversidad biológica es fruto de la interacción entre numerosas especies, ya sean marinas, vegetales o animales, a la par que de los muchos factores limitantes que caracterizan el medio que habitan. El análisis multivariante utiliza las relaciones entre diferentes variables para ordenar los objetos de estudio según sus propiedades colectivas y luego clasificarlos; es decir, agrupar especies o ecosistemas en distintas clases compuestas cada una por entidades con propiedades parecidas. El fin último es relacionar la variabilidad biológica observada con las correspondientes características medioambientales. Multivariate Analysis of Ecological Data explica de manera completa y estructurada cómo analizar e interpretar los datos ecológicos observados sobre múltiples variables, tanto biológicos como medioambientales. Tras una introducción general a los datos ecológicos multivariantes y la metodología estadística, se abordan en capítulos específicos, métodos como aglomeración (clustering), regresión, biplots, escalado multidimensional, análisis de correspondencias (simple y canónico) y análisis log-ratio, con atención también a sus problemas de modelado y aspectos inferenciales. El libro plantea una serie de aplicaciones a datos reales derivados de investigaciones ecológicas, además de dos casos detallados que llevan al lector a apreciar los retos de análisis, interpretación y comunicación inherentes a los estudios a gran escala y los diseños complejos.
Table of contents
Ecological data has several special properties: the presence or absence of species on a semi-quantitative abundance scale; non-linear relationships between species and environmental factors; and high inter-correlations among species and among environmental variables. The analysis of such data is important to the interpretation of relationships within plant and animal communities and with their environments. In this corrected version of Data Analysis in Community and Landscape Ecology, without using complex mathematics, the contributors demonstrate the methods that have proven most useful, with examples, exercises and case-studies. Chapters explain in an elementary way powerful data analysis techniques such as logic regression, canonical correspondence analysis, and kriging.
With its focus on the practical application of the techniques of multivariate statistics, this book shapes the powerful tools of statistics for the specific needs of ecologists and makes statistics more applicable to their course of study. It gives readers a solid conceptual understanding of the role of multivariate statistics in ecological applications and the relationships among various techniques, while avoiding detailed mathematics and the underlying theory. More importantly, the reader will gain insight into the type of research questions best handled by each technique and the important considerations in applying them. Whether used as a textbook for specialised courses or as a supplement to general statistics texts, the book emphasises those techniques that students of ecology and natural resources most need to understand and employ in their research. While targeted for upper-division and graduate students in wildlife biology, forestry, and ecology, and for professional wildlife scientists and natural resource managers, this book will also be valuable to researchers in any of the biological sciences.
This book introduces the ade4 package for R which provides multivariate methods for the analysis of ecological data. It is implemented around the mathematical concept of the duality diagram, and provides a unified framework for multivariate analysis. The authors offer a detailed presentation of the theoretical framework of the duality diagram and also of its application to real-world ecological problems. These two goals may seem contradictory, as they concern two separate groups of scientists, namely statisticians and ecologists. However, statistical ecology has become a scientific discipline of its own, and the good use of multivariate data analysis methods by ecologists implies a fair knowledge of the mathematical properties of these methods. The organization of the book is based on ecological questions, but these questions correspond to particular classes of data analysis methods. The first chapters present both usual and multiway data analysis methods. Further chapters are dedicated for example to the analysis of spatial data, of phylogenetic structures, and of biodiversity patterns. One chapter deals with multivariate data analysis graphs. In each chapter, the basic mathematical definitions of the methods and the outputs of the R functions available in ade4 are detailed in two different boxes. The text of the book itself can be read independently from these boxes. Thus the book offers the opportunity to find information about the ecological situation from which a question raises alongside the mathematical properties of methods that can be applied to answer this question, as well as the details of software outputs. Each example and all the graphs in this book come with executable R code.