Download Free Multiscale Stochastic Volatility For Equity Interest Rate And Credit Derivatives Book in PDF and EPUB Free Download. You can read online Multiscale Stochastic Volatility For Equity Interest Rate And Credit Derivatives and write the review.

Building upon the ideas introduced in their previous book, Derivatives in Financial Markets with Stochastic Volatility, the authors study the pricing and hedging of financial derivatives under stochastic volatility in equity, interest-rate, and credit markets. They present and analyze multiscale stochastic volatility models and asymptotic approximations. These can be used in equity markets, for instance, to link the prices of path-dependent exotic instruments to market implied volatilities. The methods are also used for interest rate and credit derivatives. Other applications considered include variance-reduction techniques, portfolio optimization, forward-looking estimation of CAPM 'beta', and the Heston model and generalizations of it. 'Off-the-shelf' formulas and calibration tools are provided to ease the transition for practitioners who adopt this new method. The attention to detail and explicit presentation make this also an excellent text for a graduate course in financial and applied mathematics.
The authors consolidate and extend ideas from their previous book. Ideal for practitioners and as a graduate-level textbook.
This book, first published in 2000, addresses pricing and hedging derivative securities in uncertain and changing market volatility.
Stress-test financial models and price credit instruments with confidence and efficiency using the perturbation approach taught in this expert volume Perturbation Methods in Credit Derivatives: Strategies for Efficient Risk Management offers an incisive examination of a new approach to pricing credit-contingent financial instruments. Author and experienced financial engineer Dr. Colin Turfus has created an approach that allows model validators to perform rapid benchmarking of risk and pricing models while making the most efficient use possible of computing resources. The book provides innumerable benefits to a wide range of quantitative financial experts attempting to comply with increasingly burdensome regulatory stress-testing requirements, including: Replacing time-consuming Monte Carlo simulations with faster, simpler pricing algorithms for front-office quants Allowing CVA quants to quantify the impact of counterparty risk, including wrong-way correlation risk, more efficiently Developing more efficient algorithms for generating stress scenarios for market risk quants Obtaining more intuitive analytic pricing formulae which offer a clearer intuition of the important relationships among market parameters, modelling assumptions and trade/portfolio characteristics for traders The methods comprehensively taught in Perturbation Methods in Credit Derivatives also apply to CVA/DVA calculations and contingent credit default swap pricing.
Finance provides a dramatic example of the successful application of mathematics to the practical problem of pricing financial derivatives. This self-contained text is designed for first courses in financial calculus. Key concepts are introduced in the discrete time framework: proofs in the continuous-time world follow naturally. The second half of the book is devoted to financially sophisticated models and instruments. A valuable feature is the large number of exercises and examples, designed to test technique and illustrate how the methods and concepts are applied to realistic financial questions.
Risk measures play a vital role in many subfields of economics and finance. It has been proposed that risk measures could be analysed in relation to the performance of variables extracted from empirical real-world data. For example, risk measures may help inform effective monetary and fiscal policies and, therefore, the further development of pricing models for financial assets such as equities, bonds, currencies, and derivative securities.A Special Issue of “Risk Measures with Applications in Finance and Economics” will be devoted to advancements in the mathematical and statistical development of risk measures with applications in finance and economics. This Special Issue will bring together the theory, practice and real-world applications of risk measures. This book is a collection of papers published in the Special Issue of “Risk Measures with Applications in Finance and Economics” for Sustainability in 2018.
This book presents the classical theorems about simply connected smooth 4-manifolds: intersection forms and homotopy type, oriented and spin bordism, the index theorem, Wall's diffeomorphisms and h-cobordism, and Rohlin's theorem. Most of the proofs are new or are returbishings of post proofs; all are geometric and make us of handlebody theory. There is a new proof of Rohlin's theorem using spin structures. There is an introduction to Casson handles and Freedman's work including a chapter of unpublished proofs on exotic R4's. The reader needs an understanding of smooth manifolds and characteristic classes in low dimensions. The book should be useful to beginning researchers in 4-manifolds.
Asymptotic analysis of stochastic stock price models is the central topic of the present volume. Special examples of such models are stochastic volatility models, that have been developed as an answer to certain imperfections in a celebrated Black-Scholes model of option pricing. In a stock price model with stochastic volatility, the random behavior of the volatility is described by a stochastic process. For instance, in the Hull-White model the volatility process is a geometric Brownian motion, the Stein-Stein model uses an Ornstein-Uhlenbeck process as the stochastic volatility, and in the Heston model a Cox-Ingersoll-Ross process governs the behavior of the volatility. One of the author's main goals is to provide sharp asymptotic formulas with error estimates for distribution densities of stock prices, option pricing functions, and implied volatilities in various stochastic volatility models. The author also establishes sharp asymptotic formulas for the implied volatility at extreme strikes in general stochastic stock price models. The present volume is addressed to researchers and graduate students working in the area of financial mathematics, analysis, or probability theory. The reader is expected to be familiar with elements of classical analysis, stochastic analysis and probability theory.
The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analysis through temporal-causal modeling, and large-scale copula-based approaches. Key features: Highlights signal processing and machine learning as key approaches to quantitative finance. Offers advanced mathematical tools for high-dimensional portfolio construction, monitoring, and post-trade analysis problems. Presents portfolio theory, sparse learning and compressed sensing, sparsity methods for investment portfolios. including eigen-portfolios, model return, momentum, mean reversion and non-Gaussian data-driven risk measures with real-world applications of these techniques. Includes contributions from leading researchers and practitioners in both the signal and information processing communities, and the quantitative finance community.