Download Free Multiresponsive Complex Emulsions Book in PDF and EPUB Free Download. You can read online Multiresponsive Complex Emulsions and write the review.

Biomembranes consist of molecular bilayers with many lipid and protein components. The fluidity of these bilayers allows them to respond to different environmental cues by changing their local molecular composition as well as their shape and topology. On the nanometer scale, this multi-responsive behavior can be studied by molecular dynamics simulations, which provide both snapshots and movies of the bilayer conformations. The general conceptual framework for these simulations is provided by the theory of curvature elasticity. The latter theory also explains the behavior of giant vesicles as observed by optical microscopy on the micrometer scale. The present volume describes new insights as obtained from recent developments in analytical theory, computer simulations, and experimental approaches. The seven chapters of the volume are arranged in a bottom-up manner from smaller to larger scales. These chapters address the refined molecular dynamics and multiscale modeling of biomembranes, their morphological complexity and adhesion, the engulfment and endocytosis of nanoparticles, the fusion of giant unilamellar vesicles, as well as recent advances in microfluidic technology applied to model membranes. - Bridging the gap between lipid molecules and giant unilamellar vesicles (GUVs) - Integrated view obtained from analytical theory, computer simulations, and experimental observations - Multiresponsive behavior and morphological complexity of biomembranes
Emulsions occur either as end products or during the processing of products in a huge range of areas including the food, agrochemical, pharmaceuticals, paints and oil industries. As end products, emulsions allow to avoid organic solvent in processing hydrophobic coatings. Emulsion technology is a suitable approach to vehicle viscous phases. It is also a remarkable mean of targeting actives or capturing specific species. The range of applications of emulsions progresses and their manufacturing becomes more and more sophisticated. Besides this broad domain of technological interest, emulsions are raising a variety of fundamental questions at the frontier between physic and chem istry. Indeed, as a class of soft colloidal materials, emulsions science is linked to various aspects of these disciplines: phase transitions, surface forces and wetting, metastability and hydrodynamic instabilities, mechanical properties and flow. The aim of this book is to review the main important concepts governing emulsion science. In Chapter 2, repulsive interactions between liquid films are discussed as well as adhesive interaction related to wetting. In Chap ter 3, consequences of weak and strong attractions are presented, related to the well accepted liquid solid transition analogy. In Chapter 4, the basics of both bulk compressibility and shear elasticity are presented, the role of disorder being the most important aspect of the elastic behavior of these soft systems. In Chapter 5 the central question of the emulsion lifetime related to metastability is discussed.
Drug Delivery Devices and Therapeutic Systems examines the current technology and innovations moving drug delivery systems (DDS) forward. The book provides an overview on the therapeutic use of drug delivery devices, including design, applications, and a description of the design of each device. While other books focus on the therapy, the primary emphasis in this book is on current technologies for DDS applications, including microfluidics, nanotechnology, biodegradable hydrogel and microneedles, with a special emphasis on wearable DDS. As part of the Developments in Biomedical Engineering and Bioelectronics series, this book is written by experts in the field and informed with information directly from manufacturers. Pharmaceutical scientists, medical researchers, biomedical engineers and clinical professionals will find this an essential reference. - Provides essential information on the most recent drug delivery systems available - Explains current technology and its applications to drug delivery - Contains contributions from biomedical engineers, pharmaceutical scientists and manufacturers
Smart Nanocontainers explores the fundamental concepts and emerging applications of nanocontainers in biomedicine, pharmaceuticals and smart materials. In pharmaceuticals, nanocontainers have advantages over their micro-counterparts, including more efficient drug detoxification, higher intracellular uptake, better stability, less side effects and higher biocompatibility with tissue and cells. In materials science, such as coating technology, they help by making coatings smarter, stronger and more durable. This important reference will help anyone who wants to learn more on how nanocontainers are used to provide the controlled release of active agents, including their applications in smart coatings, corrosion, drug delivery, diagnosis, agri-food and gas storage. - Discusses how the molecular design of nanocarriers can be optimized to increase performance - Explores how nanocarriers are being used to produce a new generation of active coatings - Explains how nanocarriers are being used to deliver more effective nanoscale drug delivery
Self-Healing Materials: Principles and Technology is a practical book aimed at giving engineers and researchers in both industry and academia the information they need to deploy self-healing technology in a wide range of potential applications—from adhesives to the automotive industry, and from electronics to biomedical implants. Developments are increasingly seeing real-world application, and this book enables practitioners to use this technology in their own work. The book first discusses the principal mechanisms of self-healing and how these are applied to the development of materials which have the ability to repair themselves—either with minimal human intervention or without human intervention at all. The book provides a theoretical background and a review of the major research undertaken to date, to give a thorough grounding in this concept and related technology. The book specifically covers fault detection mechanisms in materials, and experimental methods to enable engineers to assess the efficiency of the self-healing process. It then discusses typical aids and additives in self-healing materials, including plasticizers, catalysts, shape-memory components, and more. Finally, the book contains real world examples of self-healing materials and how these have been applied to around 40 groups of products and industries, including materials used in the automotive industry, construction, composite materials for aerospace, biomaterials and materials used in medical devices, and adhesives and sealants. - Helps materials scientists and engineers to reduce risk of degradation and materials failure by using self-healing materials in a range of applications - Provides real world application examples, so practitioners can assess the applicability and usefulness of self-healing materials in their work - Includes guidance on the efficiency and efficacy of self-healing mechanisms, with coverage of the different parameters to be considered, and methodologies to use - Discusses typical aids and additives in self-healing materials, including plasticizers, catalysts, shape-memory components, and more
Applications of Polymers in Drug Delivery, Second Edition, provides a comprehensive resource for anyone looking to understand how polymeric materials can be applied to current, new, and emerging drug delivery applications. Polymers play a crucial role in modulating drug delivery and have been fundamental in the successful development of many novel drug delivery systems. This book describes the development of polymeric systems, ranging from conventional dosage forms to the most recent smart systems. Regulatory and intellectual property aspects as well as the clinical applicability of polymeric drug delivery systems are also discussed. The chapters are organized by specific delivery route, offering methodical and detailed coverage throughout. This second edition has been thoroughly revised to include the latest developments in the field. This is an essential book for researchers, scientists, and advanced students, in polymer science, drug delivery, pharmacology/pharmaceuticals, materials science, tissue engineering, nanomedicine, chemistry, and biology. In industry, this book supports scientists, R&D, and other professionals, working on polymers for drug delivery applications. - Explains how polymers can be prepared and utilized for all major drug delivery routes - Presents the latest advances, including drug targeting, polymeric micelles and polymersomes, and the delivery of biologicals and nucleic acid therapeutics - Includes appendices with in-depth information on pharmaceutical properties of polymers and regulatory aspects
After the drug discovery and development process, designing suitable formulations to safely deliver the optimum dose, while avoiding side effects, has been a constant challenge, especially when drugs are very toxic and have poor solubility and undesirable clearance profiles. With recent advances in synthetic technologies, nanoparticles can be custom-made from a variety of advanced materials to mimic the bioenvironment and can be equipped with various targeting and imaging moieties for site-specific delivery and real-time imaging. Drug Delivery Using Nanomaterials covers advancements in the field of nanoparticle-based drug-delivery systems, along with all the aspects needed for a successful and marketable nanoformulation. FEATURES Offers a general overview of the entire process involved in the synthesis and characterization of pharmaceutical nanoparticles Covers a broad range of synthetic materials for developing nanoformulations customized for specific disease states, target organs, and drugs Every chapter sequentially builds, providing a progressive pathway from classical nanoparticles to the more advanced to be used as a full drug product by consumers Provides information in a bottom-up manner in that definitions and explanations of relevant background information serve as a framework for understanding advanced concepts This user-friendly reference is aimed at materials engineers, chemical engineers, biomedical engineers, pharmaceutical scientists, chemists, and others working on advanced drug delivery, from academia as well as industry.
Natural and synthetic water soluble polymers are used in a wide range of familiar industrial and consumer products, including coatings and inks, papers, adhesives, cosmetics and personal care products. They perform a variety of functions without which these products would be significantly more expensive, less effective or both. Written for research, development and formulation chemists, technologists and engineers at graduate level and beyond in the fine and specialty chemicals, polymers, food and pharmaceutical industries, the Handbook of Industrial Water Soluble Polymers deals specifically with the functional properties of both natural and synthetic water soluble polymers. By taking a function based approach, rather than a “polymer specific” approach the book illustrates how polymer structure leads to effect, and shows how different polymer types can be employed to achieve appropriate product properties.
The triggered release of functional compounds from such polymeric carriers as micelles, nanoparticles or nanogels is a rapidly developing and highly versatile concept which is expected to be one of the key approaches to future therapeutics. In his thesis, Daniel Klinger highlights the approach of stimuli-responsive microgels for such applications and discusses why especially light as a trigger has an outstanding position amongst the family of conventional stimuli. Based on these considerations, the author focuses on the design, synthesis and characterization of novel photo-sensitive microgels and nanoparticles as potential materials for the loading and light-triggered release/accessibility of functional compounds. Starting from the synthesis of photo-cleavable organic building blocks and their use in the preparation of polymeric nanoparticles, continuing to the examination of their loading and release profiles, and concluding with biological in vitro studies of the final materials, Daniel Klinger’s work is an excellent example of the multidisciplinary research needed for the successful development of new materials in this field and has led to a number of further publications in internationally respected journals.
Smart Polymers and Their Applications, Second Edition presents an up-to-date resource of information on the synthesis and properties of different types of smart polymers, including temperature, pH, electro, magnetic and photo-responsive polymers, amongst others. It is an ideal introduction to this field, as well as a review of the latest research in this area. Shape memory polymers, smart polymer hydrogels, and self-healing polymer systems are also explored. In addition, a very strong focus on applications of smart polymers is included for tissue engineering, smart polymer nanocarriers for drug delivery, and the use of smart polymers in medical devices. Additionally, the book covers the use of smart polymers for textile applications, packaging, energy storage, optical data storage, environmental protection, and more. This book is an ideal, technical resource for chemists, chemical engineers, materials scientists, mechanical engineers and other professionals in a range of industries. - Includes a significant number of new chapters on smart polymer materials development, as well as new applications development in energy storage, sensors and devices, and environmental protection - Provides a multidisciplinary approach to the development of responsive polymers, approaching the subject by the different types of polymer (e.g. temperature-responsive) and its range of applications