Download Free Multirate Simulation For High Fidelity Haptic Interaction With Deformable Objects In Virtual Environments Book in PDF and EPUB Free Download. You can read online Multirate Simulation For High Fidelity Haptic Interaction With Deformable Objects In Virtual Environments and write the review.

The focus from most Virtual Reality (VR) systems lies mainly on the visual immersion of the user. But the emphasis only on the visual perception is insufficient for some applications as the user is limited in his interactions within the VR. Therefore the textbook presents the principles and theoretical background to develop a VR system that is able to create a link between physical simulations and haptic rendering which requires update rates of 1\,kHz for the force feedback. Special attention is given to the modeling and computation of contact forces in a two-finger grasp of textiles. Addressing further the perception of small scale surface properties like roughness, novel algorithms are presented that are not only able to consider the highly dynamic behaviour of textiles but also capable of computing the small forces needed for the tactile rendering at the contact point. Final analysis of the entire VR system is being made showing the problems and the solutions found in the work
The human haptic system, among all senses, provides unique and bidirectional communication between humans and their physical environment. Yet, to date, most human-computer interactive systems have focused primarily on the graphical rendering of visual information and, to a lesser extent, on the display of auditory information. Extending the frontier of visual computing, haptic interfaces, or force feedback devices, have the potential to increase the quality of human-computer interaction by accommodating the sense of touch. They provide an attractive augmentation to visual display and enhance the level of understanding of complex data sets. They have been effectively used for a number of applications including molecular docking, manipulation of nano-materials, surgical training, virtual prototyping, and digital sculpting. Compared with visual and auditory display, haptic rendering has extremely demanding computational requirements. In order to maintain a stable system while displaying smooth and realistic forces and torques, high haptic update rates in the range of 500-1000 Hz or more are typically used. Haptics present many new challenges to researchers and developers in computer graphics and interactive techniques. Some of the critical issues include the development of novel data structures to encode shape and material properties, as well as new techniques for geometry processing, data analysis, physical modeling, and haptic visualization. This synthesis examines some of the latest developments on haptic rendering, while looking forward to exciting future research in this area. It presents novel haptic rendering algorithms that take advantage of the human haptic sensory modality. Specifically it discusses different rendering techniques for various geometric representations (e.g. point-based, polygonal, multiresolution, distance fields, etc), as well as textured surfaces. It also shows how psychophysics of touch can provide the foundational design guidelines for developing perceptually driven force models and concludes with possible applications and issues to consider in future algorithmic design, validating rendering techniques, and evaluating haptic interfaces.
For a long time, human beings have dreamed of a virtual world where it is possible to interact with synthetic entities as if they were real. It has been shown that the ability to touch virtual objects increases the sense of presence in virtual environments. This book provides an authoritative overview of state-of-theart haptic rendering algorithms
This four-volume set LNCS 6761-6764 constitutes the refereed proceedings of the 14th International Conference on Human-Computer Interaction, HCII 2011, held in Orlando, FL, USA in July 2011, jointly with 8 other thematically similar conferences. The revised papers presented were carefully reviewed and selected from numerous submissions. The papers accepted for presentation thoroughly cover the entire field of Human-Computer Interaction, addressing major advances in knowledge and effective use of computers in a variety of application areas. The papers of this volume are organized in topical sections on touch-based and haptic interaction, gaze and gesture-based interaction, voice, natural language and dialogue, novel interaction techniques and devices, and avatars and embodied interaction.
This book is a collection of papers on the state of the art in experimental robotics. Experimental Robotics is at the core of validating robotics research for both its systems science and theoretical foundations. Because robotics experiments are carried out on physical, complex machines, of which its controllers are subject to uncertainty, devising meaningful experiments and collecting statistically significant results, pose important and unique challenges in robotics. Robotics experiments serve as a unifying theme for robotics system science and algorithmic foundations. These observations have led to the creation of the International Symposia on Experimental Robotics. The papers in this book were presented at the 2002 International Symposium on Experimental Robotics.
ISRR, the "International Symposium on Robotics Research", is one of robotics’ pioneering symposia, which has established some of the field's most fundamental and lasting contributions over the past two decades. This book presents the results of the eleventh edition of "Robotics Research" ISRR03, offering a broad range of topics in robotics. The contributions provide a wide coverage of the current state of robotics research: the advances and challenges in its theoretical foundation and technology basis, and the developments in its traditional and new emerging areas of applications. The diversity, novelty, and span of the work unfolding in these areas reveal the field's increased maturity and expanded scope, and define the state of the art of robotics and its future direction.
Haptic interfaces are divided into two main categories: force feedback and tactile. Force feedback interfaces are used to explore and modify remote/virtual objects in three physical dimensions in applications including computer-aided design, computer-assisted surgery, and computer-aided assembly. Tactile interfaces deal with surface properties such as roughness, smoothness, and temperature. Haptic research is intrinsically multi-disciplinary, incorporating computer science/engineering, control, robotics, psychophysics, and human motor control. By extending the scope of research in haptics, advances can be achieved in existing applications such as computer-aided design (CAD), tele-surgery, rehabilitation, scientific visualization, robot-assisted surgery, authentication, and graphical user interfaces (GUI), to name a few. Advances in Haptics presents a number of recent contributions to the field of haptics. Authors from around the world present the results of their research on various issues in the field of haptics.
Annotation This book constitutes the proceedings of the conference on Haptics: Generating and Perceiving Tangible Sensations, held in Amsterdam, Netherlands in July 2010.
At the dawn of the new millennium, robotics is undergoing a major transfor- tion in scope and dimension. From a largely dominant industrial focus, robotics is rapidly expanding into the challenges of unstructured environments. Inter- ting with, assisting, serving, and exploring with humans, the emerging robots will increasingly touch people and their lives. The goal of this new series of Springer Tracts in Advanced Robotics is to bring,inatimelyfashion,thelatestadvancesanddevelopmentsinroboticsonthe basisoftheirsigni?canceandquality.Itisourhopethatthegreaterdissemination of research developments will stimulate more exchanges and collaborations among the research community and contribute to further advancement of this rapidly growing ?eld. As one of robotics pioneering symposia, ISRR, the "International Sym- sium on Robotics Research," has established over the past two decades some of the ?eld’s most fundamental and lasting contributions.With the launching of STAR, this and other thematic symposia devoted to excellence in robotics ?nd an important platform for closer links and extended reach within the research community. The Tenth edition of "Robotics Research" edited by Raymond Jarvis and AlexZelinskyoffersinits11-partvolumeacollectionofabroadrangeoftopics in robotics. The content of these contributions provides a wide coverage of the current state of robotics research: the advances and challenges in its theoretical foundation and technology basis, and the developments in its traditional and new areas of applications.
Haptics: The state-of-the-art in building touch-based interfaces for virtual environments. -- Key research issues: model acquisition, contact detection, force feedback, compression, capture, and collaboration. -- Understanding the role of human factors in haptic interfaces. -- Applications: medical training, telesurgery, biological and scientific interfaces, military applications, sign language, museum display, and more. Haptics -- "touch-based" interface design -- is the exciting new frontier in research on virtual and immersive environments. In Touch in Virtual Environments, the field's leading researchers bring together their most advanced work and applications. They identify the key challenges facing haptic interface developers, present today's best solutions, and outline a clear research agenda for the future. This book draws upon work first presented at the breakthrough haptics conference held recently at USC's Integrated Media Systems Center. The editors and contributors begins by reviewing key haptics applications and the challenges of effective haptic rendering, presenting new insights into model acquisition, contact detection, force feedback, compression, capture, collaboration, and other key issues. Next, they focus on the complex human factors associated with successful haptic interfaces, examining questions such as: How can we make haptic displays more usable for blind and visually impaired users? What are the differences between perceiving texture with the bare skin and with a probe? In the book's final section, several of today's leading haptic applications are introduced, including telesurgery and surgical simulation; scientific visualization.