Download Free Multiplicative Partial Differential Equations Book in PDF and EPUB Free Download. You can read online Multiplicative Partial Differential Equations and write the review.

Multiplicative Partial Differential Equations presents an introduction to the theory of multiplicative partial differential equations (MPDEs). It is suitable for all types of basic courses on MPDEs. The author’s aim is to present a clear and well-organized treatment of the concept behind the development of mathematics and solution techniques. The text material of this book is presented in a highly readable, mathematically solid format. Many practical problems are illustrated displaying a wide variety of solution techniques. Features Includes new classification and canonical forms of second-order MPDEs Proposes a new technique to solving the multiplicative wave equation such as the method of separation of variables and the energy method The proposed technique in the book can be used to give the basic properties of multiplicative elliptic problems, fundamental solutions, multiplicative integral representation of multiplicative harmonic functions, mean-value formulas, strong principle of maximum, multiplicative Poisson equation, multiplicative Green functions, method of separation of variables, and theorems of Liouville and Harnack
This monograph addresses the global controllability of partial differential equations in the context of multiplicative (or bilinear) controls, which enter the model equations as coefficients. The methodology is illustrated with a variety of model equations.
Here is, for the first time, a book that clearly explains and applies new level set methods to problems and applications in computer vision, graphics, and imaging. It is an essential compilation of survey chapters from the leading researchers in the field. The applications of the methods are emphasized.
Ordinary differential control thPory (the classical theory) studies input/output re lations defined by systems of ordinary differential equations (ODE). The various con cepts that can be introduced (controllability, observability, invertibility, etc. ) must be tested on formal objects (matrices, vector fields, etc. ) by means of formal operations (multiplication, bracket, rank, etc. ), but without appealing to the explicit integration (search for trajectories, etc. ) of the given ODE. Many partial results have been re cently unified by means of new formal methods coming from differential geometry and differential algebra. However, certain problems (invariance, equivalence, linearization, etc. ) naturally lead to systems of partial differential equations (PDE). More generally, partial differential control theory studies input/output relations defined by systems of PDE (mechanics, thermodynamics, hydrodynamics, plasma physics, robotics, etc. ). One of the aims of this book is to extend the preceding con cepts to this new situation, where, of course, functional analysis and/or a dynamical system approach cannot be used. A link will be exhibited between this domain of applied mathematics and the famous 'Backlund problem', existing in the study of solitary waves or solitons. In particular, we shall show how the methods of differ ential elimination presented here will allow us to determine compatibility conditions on input and/or output as a better understanding of the foundations of control the ory. At the same time we shall unify differential geometry and differential algebra in a new framework, called differential algebraic geometry.
This book is devoted to multiplicative analytic geometry. The book reflects recent investigations into the topic. The reader can use the main formulae for investigations of multiplicative differential equations, multiplicative integral equations and multiplicative geometry. The authors summarize the most recent contributions in this area. The goal of the authors is to bring the most recent research on the topic to capable senior undergraduate students, beginning graduate students of engineering and science and researchers in a form to advance further study. The book contains eight chapters. The chapters in the book are pedagogically organized. Each chapter concludes with a section with practical problems. Two operations, differentiation and integration, are basic in calculus and analysis. In fact, they are the infinitesimal versions of the subtraction and addition operations on numbers, respectively. In the period from 1967 till 1970, Michael Grossman and Robert Katz gave definitions of a new kind of derivative and integral, moving the roles of subtraction and addition to division and multiplication, and thus established a new calculus, called multiplicative calculus. Multiplicative calculus can especially be useful as a mathematical tool for economics and finance. Multiplicative Analytic Geometry builds upon multiplicative calculus and advances the theory to the topics of analytic and differential geometry.
The Handbook of Nonlinear Partial Differential Equations is the latest in a series of acclaimed handbooks by these authors and presents exact solutions of more than 1600 nonlinear equations encountered in science and engineering--many more than any other book available. The equations include those of parabolic, hyperbolic, elliptic and other types, and the authors pay special attention to equations of general form that involve arbitrary functions. A supplement at the end of the book discusses the classical and new methods for constructing exact solutions to nonlinear equations. To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology, outline some of the methods in a schematic, simplified manner, and arrange the equations in increasing order of complexity. Highlights of the Handbook:
Provides exact solutions Describes numerical methods or numerical solutions, analytical methods, stability/instability issues Focus on partial differential equations
A balanced guide to the essential techniques for solving elliptic partial differential equations Numerical Analysis of Partial Differential Equations provides a comprehensive, self-contained treatment of the quantitative methods used to solve elliptic partial differential equations (PDEs), with a focus on the efficiency as well as the error of the presented methods. The author utilizes coverage of theoretical PDEs, along with the nu merical solution of linear systems and various examples and exercises, to supply readers with an introduction to the essential concepts in the numerical analysis of PDEs. The book presents the three main discretization methods of elliptic PDEs: finite difference, finite elements, and spectral methods. Each topic has its own devoted chapters and is discussed alongside additional key topics, including: The mathematical theory of elliptic PDEs Numerical linear algebra Time-dependent PDEs Multigrid and domain decomposition PDEs posed on infinite domains The book concludes with a discussion of the methods for nonlinear problems, such as Newton's method, and addresses the importance of hands-on work to facilitate learning. Each chapter concludes with a set of exercises, including theoretical and programming problems, that allows readers to test their understanding of the presented theories and techniques. In addition, the book discusses important nonlinear problems in many fields of science and engineering, providing information as to how they can serve as computing projects across various disciplines. Requiring only a preliminary understanding of analysis, Numerical Analysis of Partial Differential Equations is suitable for courses on numerical PDEs at the upper-undergraduate and graduate levels. The book is also appropriate for students majoring in the mathematical sciences and engineering.
This Festschrift contains five research surveys and thirty-four shorter contributions by participants of the conference ''Stochastic Partial Differential Equations and Related Fields'' hosted by the Faculty of Mathematics at Bielefeld University, October 10–14, 2016. The conference, attended by more than 140 participants, including PostDocs and PhD students, was held both to honor Michael Röckner's contributions to the field on the occasion of his 60th birthday and to bring together leading scientists and young researchers to present the current state of the art and promising future developments. Each article introduces a well-described field related to Stochastic Partial Differential Equations and Stochastic Analysis in general. In particular, the longer surveys focus on Dirichlet forms and Potential theory, the analysis of Kolmogorov operators, Fokker–Planck equations in Hilbert spaces, the theory of variational solutions to stochastic partial differential equations, singular stochastic partial differential equations and their applications in mathematical physics, as well as on the theory of regularity structures and paracontrolled distributions. The numerous research surveys make the volume especially useful for graduate students and researchers who wish to start work in the above-mentioned areas, or who want to be informed about the current state of the art.