Download Free Multiple Roles Of Clays In Radioactive Waste Confinement Book in PDF and EPUB Free Download. You can read online Multiple Roles Of Clays In Radioactive Waste Confinement and write the review.

This Special Publication highlights the importance of clays and clayey material, and their multiple roles, in many national geological disposal facilities for higher activity radioactive wastes. Clays can be both the disposal facility host rock and part of its intrinsic engineered barriers, and may be present in the surrounding geological environment. Clays possess various characteristics that make them high-quality barriers to the migration of radionuclides and chemical contaminants, e.g. very little water movement, diffusive transport, retention capacity, self-sealing capacity, stability over millions of years, homogeneity and lateral continuity.
This Special Publication contains 43 scientific studies presented at the 5th conference on ‘Clays in natural and engineered barriers for radioactive waste confinement’ held in Montpellier, France in 2012. The conference and this resulting volume cover all the aspects of clay characterization and behaviour considered at various temporal and spatial scales relevant to the confinement of radionuclides in clay, from basic phenomenological process descriptions to the global understanding of performance and safety at repository and geological scales. Special emphasis has been given to the modelling of processes occurring at the mineralogical level within the clay barriers. The papers in this Special Publication consider research into argillaceous media under the following topic areas: large-scale geological characterization; clay-based concept/large-scale experiments; hydrodynamical modelling; geochemistry; geomechanics; mass transfer/gas transfer; mass transfer mechanisms. The collection of different topics presented in this Special Publication demonstrates the diversity of geological repository research.
Teaches the application of Reactive Transport Modeling (RTM) for subsurface systems in order to expedite the understanding of the behavior of complex geological systems This book lays out the basic principles and approaches of Reactive Transport Modeling (RTM) for surface and subsurface environments, presenting specific workflows and applications. The techniques discussed are being increasingly commonly used in a wide range of research fields, and the information provided covers fundamental theory, practical issues in running reactive transport models, and how to apply techniques in specific areas. The need for RTM in engineered facilities, such as nuclear waste repositories or CO2 storage sites, is ever increasing, because the prediction of the future evolution of these systems has become a legal obligation. With increasing recognition of the power of these approaches, and their widening adoption, comes responsibility to ensure appropriate application of available tools. This book aims to provide the requisite understanding of key aspects of RTM, and in doing so help identify and thus avoid potential pitfalls. Reactive Transport Modeling covers: the application of RTM for CO2 sequestration and geothermal energy development; reservoir quality prediction; modeling diagenesis; modeling geochemical processes in oil & gas production; modeling gas hydrate production; reactive transport in fractured and porous media; reactive transport studies for nuclear waste disposal; reactive flow modeling in hydrothermal systems; and modeling biogeochemical processes. Key features include: A comprehensive reference for scientists and practitioners entering the area of reactive transport modeling (RTM) Presented by internationally known experts in the field Covers fundamental theory, practical issues in running reactive transport models, and hands-on examples for applying techniques in specific areas Teaches readers to appreciate the power of RTM and to stimulate usage and application Reactive Transport Modeling is written for graduate students and researchers in academia, government laboratories, and industry who are interested in applying reactive transport modeling to the topic of their research. The book will also appeal to geochemists, hydrogeologists, geophysicists, earth scientists, environmental engineers, and environmental chemists.
This volume has evolved from papers written in memory of Professor David Roberts. They summarize the key findings of recent research on passive margins, from tectonics, bathymetry, stratigraphy and sedimentation, structural evolution and magmatism. Papers include analyses of the central and southern Atlantic margins of South America and Africa, papers on magmatism and extension in the NE Brazilian margin and on the Cote de Ivoire margin, rift architectures of the NW Red Sea margin, tectonics of the eastern Mediterranean margin, salt tectonics of passive margins of the Gulf of Mexico and Brazil, and papers on the NW Shelf margin of Australia. The volume provides readers with new insights into the complexities of passive margin systems that are in reality, not so passive.
Focused attention by world leaders is needed to address the substantial challenges posed by disposal of spent nuclear fuel from reactors and high-level radioactive waste from processing such fuel. The biggest challenges in achieving safe and secure storage and permanent waste disposal are societal, although technical challenges remain. Disposition of radioactive wastes in a deep geological repository is a sound approach as long as it progresses through a stepwise decision-making process that takes advantage of technical advances, public participation, and international cooperation. Written for concerned citizens as well as policymakers, this book was sponsored by the U.S. Department of Energy, U.S. Nuclear Regulatory Commission, and waste management organizations in eight other countries.
A comprehensive review of environmental remediation is presented with an emphasis on the role of clay minerals in water purification. In the first chapter, important aspects of environmental problems and possible solutions are discussed. In the second chapter, the application of natural clay minerals as environmental cleaning agents are explained. The discussion is focused on the role of different types of clay materials in hazardous substance removal from air, aqueous solutions, wastewater, aquaculture, ground water, etc. In the next chapter, the modification of clay materials is explored including the preparation of clay composite materials for environmental remediation. Various aspects of clay material modifications and the effects of clay surface chemistry on the removal of hazardous material is also discussed. Next, the equilibrium and kinetics of hazardous substance adsorption is presented. This chapter summarizes recent studies on the removal of hazardous substances from aqueous solutions and the environment using various types of clay minerals. The brief also includes various models used in adsorption studies and touches on the characterization of clay minerals.
It is internationally accepted that the safest and most sustainable option for managing radioactive waste is geological disposal, utilizing both engineering and geology to isolate the waste and contain the radioactivity. This Special Publication contains 25 scientific studies presented at the 6th conference on ‘Clays in natural and engineered barriers for radioactive waste confinement’ held in Brussels, Belgium in 2015. The conference and this resulting volume cover many of the aspects of clay characterization and behaviour considered at various temporal and spatial scales relevant to the confinement of radionuclides in clay, from basic phenomenological process descriptions to the global understanding of performance and safety at repository and geological scales. The papers in this volume consider research into argillaceous media under the following topic areas: large-scale geological characterization; general strategy for clay-based disposal systems; geomechanics; mass transfer; bentonite evolution and gas transfer. The collection of different topics presented in this Special Publication demonstrates the diversity of geological repository research.