Download Free Multiple Pulse Nmr Experiments Book in PDF and EPUB Free Download. You can read online Multiple Pulse Nmr Experiments and write the review.

FROM THE PREFACE: Pulse Methods in 1D and 2D Liquid-Phase NMR is written to enable the practicing NMR spectroscopist to understand and apply the varied and powerful new techniques developed in the past few years for obtaining spectra with greatly increased information content and from smaller and smaller samples. The intent is to describe both theory and practice in simple and detailed fashion so that the methods may be critically evaluated and effectively used in any potential application. As methods become more complex they require more instrument time, and it is important to be able to judge whether the investment of this time is justified. It is also essential for the spectroscopist to be in a position to evaluate the capabilities of the instrumentation available, as well as the additional requirements for utilization of particular new methods. The material in this book assumes a knowledge of continuous-wave NMR methods as well as an elementary understanding of the normal pulsed Fourier-transform spectroscopic procedures, together with a knowledge of such related phenomena as the nuclear Overhauser effect. Although much of the treatment is necessarily methematical, this aspect of the presentation has been simplified as much as possible.
Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful and theoretically complex analytical tool. Basic 1H- and 13C-NMR Spectroscopy provides an introduction to the principles and applications of NMR spectroscopy. Whilst looking at the problems students encounter when using NMR spectroscopy, the author avoids the complicated mathematics that are applied within the field. Providing a rational description of the NMR phenomenon, this book is easy to read and is suitable for the undergraduate and graduate student in chemistry. - Describes the fundamental principles of the pulse NMR experiment and 2D NMR spectra - Easy to read and written with the undergraduate and graduate chemistry student in mind - Provides a rational description of NMR spectroscopy without complicated mathematics
This book is about pulse nuclear magnetic resonance (NMR), with its techniques, the information to be obtained, and practical advice on performing experiments. The emphasis is on the motivation and physical ideas underlying NMR experiments and the actual techniques, including the hardware used. The level is generally suitable for those to whom pulse NMR is a new technique, be they students in chemistry or physics on the one hand and research workers in biology, geology, or agriculture, on the other. The book can be used for a senior or first year graduate course where it could supplement the standard NMR texts.
From the initial observation of proton magnetic resonance in water and in paraffin, the discipline of nuclear magnetic resonance has seen unparalleled growth as an analytical method. Modern NMR spectroscopy is a highly developed, yet still evolving, subject which finds application in chemistry, biology, medicine, materials science and geology. In this book, emphasis is on the more recently developed methods of solution-state NMR applicable to chemical research, which are chosen for their wide applicability and robustness. These have, in many cases, already become established techniques in NMR laboratories, in both academic and industrial establishments. A considerable amount of information and guidance is given on the implementation and execution of the techniques described in this book.
This work-book will guide you safely, in step-by-step descriptions, through every detail of the NMR experiments within, beginning with 1D routine experiments and ending with a series of advanced 3D experiments on a protein: ? Which experiment can best yield the desired information? ? How must the chosen experiment be performed? ? How does one read the required information from the spectrum? ? How does this particular pulse sequence work? ? Which other experiments give similar information? This third edition of the book, following its two highly successful predecessors, has been revised and expanded to 206 experiments. They are organized in 15 chapters, covering test procedures and routine spectra, variable temperature measurements, the use of auxiliary reagents, 1D multipulse experiments, spectra of heteronuclides, and the application of selective pulses. The second and third dimensions are introduced using pulsed field gradients, and experiments on solid state materials are described. A key part describes 3D experiments on the protein ubiquitin with 76 amino acids. What is new in this third edition? 1. 24 new experiments have been inserted into the 14 chapters that were in the 2nd edition, e.g., alpha/beta-SELINCOR-TOCSY, WET, DOSY, ct-COSY, HMSC, HSQC with adiabatic pulses, HETLOC. J-resolved HMBC, (1,1)- and (1,n)-ADEQUATE, STD, REDOR, and HR-MAS. 2. 20 new protein NMR experiments have been specially devised and are collected in the newly added Chapter 15, ProteinNMR, for which one needs a special model sample: fully 13C- and 15N-labeled human ubiquitin. Techniques used include the constant time principle, the PEP method, filters, gradient selection, and the echo/anti-echo procedure. The guide has been written by experts in this field, following the principle of learning by doing: all the experiments have been specially performed for this book, exactly as described and shown in the spectra that are reproduced. Being a reference source and work-book for the NMR laboratory as well as a textbook, it is a must for every scientist working with NMR, as well as for students preparing for their laboratory courses
NMR spectroscopy has proven to be a powerful technique to study the structure and dynamics of biological macromolecules. Fundamentals of Protein NMR Spectroscopy is a comprehensive textbook that guides the reader from a basic understanding of the phenomenological properties of magnetic resonance to the application and interpretation of modern multi-dimensional NMR experiments on 15N/13C-labeled proteins. Beginning with elementary quantum mechanics, a set of practical rules is presented and used to describe many commonly employed multi-dimensional, multi-nuclear NMR pulse sequences. A modular analysis of NMR pulse sequence building blocks also provides a basis for understanding and developing novel pulse programs. This text not only covers topics from chemical shift assignment to protein structure refinement, as well as the analysis of protein dynamics and chemical kinetics, but also provides a practical guide to many aspects of modern spectrometer hardware, sample preparation, experimental set-up, and data processing. End of chapter exercises are included to emphasize important concepts. Fundamentals of Protein NMR Spectroscopy not only offer students a systematic, in-depth, understanding of modern NMR spectroscopy and its application to biomolecular systems, but will also be a useful reference for the experienced investigator.
This book is the perfect link for learning how to perform the experiments after only having studied theory. In eight chapters more than 50 essential NMR experiments are described in detail. Special focus is put on the organic set of NMR spectra (1H, 13C-APT, COSY, NOESY, HSQC and HMBC). Different chapters deal with advanced organic NMR, selective methods, heteronuclear NMR, relaxation and diffusion measurements, organic applications and maintenance. Every experiment has a section providing the reader with the purpose and scope of the specific experiment. Every experiment is concluded with the spectrum as it is obtained under the conditions described. Questions and comments enable the reader to check their understanding. The authors are very experienced and the whole book is in full color, which enhances the reading experience and makes the spectra and other figures easier to understand. This book is strongly recommended for all students and researchers who are involved in the structural elucidation of chemical compounds both in practical education and in pursuing research, in particular if they handle an NMR spectrometer.