Download Free Multiple Gaussian Hypergeometric Series Book in PDF and EPUB Free Download. You can read online Multiple Gaussian Hypergeometric Series and write the review.

This book presents a novel journey of the Gauss hypergeometric function and contains the different versions of the Gaussian hypergeometric function, including its classical version. In particular, the $q$-Gauss or basic Gauss hypergeometric function, Gauss hypergeometric function with matrix arguments, Gauss hypergeometric function with matrix parameters, the matrix-valued Gauss hypergeometric function, the finite field version, the extended Gauss hypergeometric function, the $(p, q)$- Gauss hypergeometric function, the incomplete Gauss hypergeometric function and the discrete analogue of Gauss hypergeometric function. All these forms of the Gauss hypergeometric function and their properties are presented in such a way that the reader can understand the working algorithm and apply the same for other special functions. This book is useful for UG and PG students, researchers and faculty members working in the field of special functions and related areas.
This volume presents the proceedings of the Summer Research Conference on q-series and related topics held at Mount Holyoke College (Hadley, Massachusetts). All of the papers were contributed by participants and offer original research. Articles in the book reflect the diversity of areas that overlap with q-series, as well as the usefulness of q-series across the mathematical sciences. The conference was held in honour of Richard Askey on the occasion of his 65th birthday.
In 1991-1993 our three-volume book "Representation of Lie Groups and Spe cial Functions" was published. When we started to write that book (in 1983), editors of "Kluwer Academic Publishers" expressed their wish for the book to be of encyclopaedic type on the subject. Interrelations between representations of Lie groups and special functions are very wide. This width can be explained by existence of different types of Lie groups and by richness of the theory of their rep resentations. This is why the book, mentioned above, spread to three big volumes. Influence of representations of Lie groups and Lie algebras upon the theory of special functions is lasting. This theory is developing further and methods of the representation theory are of great importance in this development. When the book "Representation of Lie Groups and Special Functions" ,vol. 1-3, was under preparation, new directions of the theory of special functions, connected with group representations, appeared. New important results were discovered in the traditional directions. This impelled us to write a continuation of our three-volume book on relationship between representations and special functions. The result of our further work is the present book. The three-volume book, published before, was devoted mainly to studying classical special functions and orthogonal polynomials by means of matrix elements, Clebsch-Gordan and Racah coefficients of group representations and to generaliza tions of classical special functions that were dictated by matrix elements of repre sentations.
This book, written by a highly distinguished author, provides the required mathematical tools for researchers active in the physical sciences. The book presents a full suit of elementary functions for scholars at PhD level. The opening chapter introduces elementary classical special functions. The final chapter is devoted to the discussion of functions of matrix argument in the real case. The text and exercises have been class-tested over five different years.
Along with more than 2100 integral equations and their solutions, this handbook outlines exact analytical methods for solving linear and nonlinear integral equations and provides an evaluation of approximate methods. Each section provides examples that show how methods can be applied to specific equations.
Developing techniques for assessing various risks and calculating probabilities of ruin and survival are exciting topics for mathematically-inclined academics. For practicing actuaries and financial engineers, the resulting insights have provided enormous opportunities but also created serious challenges to overcome, thus facilitating closer cooperation between industries and academic institutions. In this book, several renown researchers with extensive interdisciplinary research experiences share their thoughts that, in one way or another, contribute to the betterment of practice and theory of decision making under uncertainty. Behavioral, cultural, mathematical, and statistical aspects of risk assessment and modelling have been explored, and have been often illustrated using real and simulated data. Topics range from financial and insurance risks to security-type risks, from one-dimensional to multi- and even infinite-dimensional risks. The articles in the book were written with a broad audience in mind and should provide enjoyable reading for those with university level degrees and/or those who have studied for accreditation by various actuarial and financial societies.
This volume comprises review papers presented at the Conference on Antidifferentiation and the Calculation of Feynman Amplitudes, held in Zeuthen, Germany, in October 2020, and a few additional invited reviews. The book aims at comprehensive surveys and new innovative results of the analytic integration methods of Feynman integrals in quantum field theory. These methods are closely related to the field of special functions and their function spaces, the theory of differential equations and summation theory. Almost all of these algorithms have a strong basis in computer algebra. The solution of the corresponding problems are connected to the analytic management of large data in the range of Giga- to Terabytes. The methods are widely applicable to quite a series of other branches of mathematics and theoretical physics.
This book presents new results in the theory of the double Mellin-Barnes integrals popularly known as the general H-function of two variables.A general integral convolution is constructed by the authors and it contains Laplace convolution as a particular case and possesses a factorization property for one-dimensional H-transform. Many examples of convolutions for classical integral transforms are obtained and they can be applied for the evaluation of series and integrals.