Download Free Multiphoton Processes And Attosecond Physics Book in PDF and EPUB Free Download. You can read online Multiphoton Processes And Attosecond Physics and write the review.

Recent advances in ultrashort pulsed laser technology have opened new frontiers in atomic, molecular and optical sciences. The 12th International Conference on Multiphoton Processes (ICOMP12) and the 3rd International Conference on Attosecond Physics (ATTO3), held jointly in Sapporo, Japan, during July 3-8, showcased studies at the forefront of research on multiphoton processes and attosecond physics. This book summarizes presentations and discussions from these two conferences.
In view of the rapid growth in both experimental and theoretical studies of multiphoton processes and multiphoton spectroscopy of atoms, ions and molecules in chemistry, physics, biology, materials science, etc., it is desirable to publish an Advanced Series that contains review papers readable not only by active researchers in these areas, but also by those who are not experts in the field but who intend to enter the field. The present series attempts to serve this purpose. Each review article is written in a self-contained manner by the experts in the area so that the readers can grasp the knowledge in the area without too much preparation.
This book presents the latest developments and issues in both experimental and theoretical studies of multi-photon processes and the spectroscopy of atoms, ions and molecules in physics, chemistry, biology and material science. It contains review papers suitable for both active researchers and non-experts who wish to enter the field.Special attention is paid to the recent progress of non-linear photonOComatter interactions in atoms, molecules and interfaces: XUV/soft X-ray, high-order harmonic generation in attosecond regime, high-order harmonic generation, sum frequency generation, four-wave mixing spectroscopy and molecular orientation with combined electrostatic and intense, non-resonant laser fields.
Comprises a comprehensive reference source that unifies the entire fields of atomic molecular and optical (AMO) physics, assembling the principal ideas, techniques and results of the field. 92 chapters written by about 120 authors present the principal ideas, techniques and results of the field, together with a guide to the primary research literature (carefully edited to ensure a uniform coverage and style, with extensive cross-references). Along with a summary of key ideas, techniques, and results, many chapters offer diagrams of apparatus, graphs, and tables of data. From atomic spectroscopy to applications in comets, one finds contributions from over 100 authors, all leaders in their respective disciplines. Substantially updated and expanded since the original 1996 edition, it now contains several entirely new chapters covering current areas of great research interest that barely existed in 1996, such as Bose-Einstein condensation, quantum information, and cosmological variations of the fundamental constants. A fully-searchable CD- ROM version of the contents accompanies the handbook.
Advances in Atomic, Molecular, and Optical Physics publishes reviews of recent developments in a field which is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered include related applied areas, such as atmospheric science, astrophysics, surface physics and laser physics. Articles are written by distinguished experts, and contain both relevant review material and detailed descriptions of important recent developments. - International experts - Comprehensive articles - New developments
A unified account of the rapidly developing field of high-intensity laser-atom interactions, suitable for both graduate students and researchers.
This book explores the relaxation dynamics of inner-valence-ionized diatomic molecules on the basis of extreme-ultraviolet pump-probe experiments performed at the free-electron laser (FEL) in Hamburg. Firstly, the electron rearrangement dynamics in dissociating multiply charged iodine molecules is studied in an experiment that made it possible to access charge transfer in a thus far unexplored quasimolecular regime relevant for plasma and chemistry applications of the FEL. Secondly the lifetime of an efficient non-radiative relaxation process that occurs in weakly bound systems is measured directly for the first time in a neon dimer (Ne2). Interatomic Coulombic decay (ICD) has been identified as the dominant decay mechanism in inner-valence-ionized or excited van-der-Waals and hydrogen bonded systems, the latter being ubiquitous in all biomolecules. The role of ICD in DNA damage thus demands further investigation, e.g. with regard to applications like radiation therapy.
This volume presents recent progress and perspectives in multi-photon processes and spectroscopy of atoms, ions, molecules and solids. The subjects in the series cover the experimental and theoretical investigations in the interdisciplinary research fields of natural science including chemistry, physics, bioscience and material science.This volume is the latest volume in a series that is a pioneer in compiling review articles of nonlinear interactions of photons and matter. It has made an essential contribution to the development and promotion of the related research fields. In view of the rapid growth in multi-photon processes and multi-photon spectroscopy, care has been taken to ensure that the review articles contained in the series are readable not only by active researchers but also those who are not yet experts but intend to enter the field.
This book is a printed edition of the Special Issue "Laser-Based Nano Fabrication and Nano Lithography" that was published in Nanomaterials