Download Free Multiphase Phenomena And Cfd Modeling And Simulation In Materials Processes Book in PDF and EPUB Free Download. You can read online Multiphase Phenomena And Cfd Modeling And Simulation In Materials Processes and write the review.

This volume contains proceedings dealing with the topics of multiphase phenomena in materials processing and computational fluid dynamics (CFD) modeling and simulation of engineering processes. This collection gathers papers from researchers and engineers involved in the modeling of multiscale and multiphase phenomena in material processing systems. Papers address gas-particle flows, liquid-liquid phase flows, bubbly driven flows, granular flows, liquid-solid flows, multiphase flows in external fields, multiscale heat and mass transfer, and microstructure formation in these multiphase systems. Papers also focus on the CFD modeling and simulation of various engineering processes, such as metal processes including casting, forging, welding, heat treating, and VAR/ESR/PAM/EBM remelting processes; coatings including PVD, CVD, and plasma-assisted EBM-PVD technologies; and other surface engineering processes including induction, laser, and EB thermal processing. The CFD modeling and simulation proceedings discuss applications of CFD to engineering processes and demonstrate how CFD could help scientists and engineers to better understand the fundamentals of engineering processes.
This collection explores computational fluid dynamics (CFD) modeling and simulation of engineering processes, with contributions from researchers and engineers involved in the modeling of multiscale and multiphase phenomena in material processing systems. The papers cover the following processes: Iron and Steelmaking (Tundish, Casting, Converter, Blast Furnace); Microstructure Evolution; Casting with External Field Interaction; and Smelting, Degassing, Ladle Processing, Mechanical Mixing, and Ingot Casting. The collection also covers applications of CFD to engineering processes, and demonstrates how CFD can help scientists and engineers to better understand the fundamentals of engineering processes.
This collection presents contributions on computational fluid dynamics (CFD) modeling and simulation of engineering processes from researchers and engineers involved in the modeling of multiscale and multiphase phenomena in material processing systems. The following processes are covered: Additive Manufacturing (Selective Laser Melting and Laser Powder Bed Fusion); Ironmaking and Steelmaking (Ladle Metallurgical Furnace, EAF, Continuous Casting, Blown Converter, Reheating Furnace, Rotary Hearth Furnace); Degassing; High Pressure Gas Atomization of Liquid Metals; Electroslag Remelting; Electrokinetic Deposition; Friction Stir Welding; Quenching; High Pressure Die Casting; Core Injection Molding; Evaporation of Metals; Investment Casting; Electromagnetic Levitation; Ingot Casting; Casting and Solidification with External Field (electromagnetic stirring and ultrasonic cavitation) Interaction and Microstructure Evolution The collection also covers applications of CFD to engineering processes, and demonstrates how CFD can help scientists and engineers to better understand the fundamentals of engineering processes.
Modeling Multiphase Materials Processes: Gas-Liquid Systems describes the methodology and application of physical and mathematical modeling to multi-phase flow phenomena in materials processing. The book focuses on systems involving gas-liquid interaction, the most prevalent in current metallurgical processes. The performance characteristics of these processes are largely dependent on transport phenomena. This volume covers the inherent characteristics that complicate the modeling of transport phenomena in such systems, including complex multiphase structure, intense turbulence, opacity of fluid, high temperature, coupled heat and mass transfer, chemical reactions in some cases, and poor wettability of the reactor walls. Also discussed are: solutions based on experimental and numerical modeling of bubbling jet systems, recent advances in the modeling of nanoscale multi-phase phenomena and multiphase flows in micro-scale and nano-scale channels and reactors. Modeling Multiphase Materials Processes: Gas-Liquid Systems will prove a valuable reference for researchers and engineers working in mathematical modeling and materials processing.
This volume fills the need for a textbook presenting basic governing and constitutive equations, followed by several engineering problems on multiphase flow and transport that are not provided in current advanced texts, monographs, or handbooks. The unique emphasis of this book is on the sound formulation of the basic equations describing multiphase transport and how they can be used to design processes in selected industrially important fields. The clear underlying mathematical and physical bases of the interdisciplinary description of multiphase flow and transport are the main themes, along with advances in the kinetic theory for particle flow systems. The book may be used as an upper-level undergraduate or graduate textbook, as a reference by professionals in the design of processes that deal with a variety of multiphase systems, and by practitioners and experts in multiphase science in the area of computational fluid dynamics (CFD) at U.S. national laboratories, international universities, research laboratories and institutions, and in the chemical, pharmaceutical, and petroleum industries. Distinct from other books on multiphase flow, this volume shows clearly how the basic multiphase equations can be used in the design and scale-up of multiphase processes. The authors represent a combination of nearly two centuries of experience and innovative application of multiphase transport representing hundreds of publications and several books. This book serves to encapsulate the essence of their wisdom and insight, and:
Proceedings of a symposium sponsored by Association for Iron and Steel Technologyandthe Process Technology and Modeling Committee of the Extraction and Processing Divisionandthe Solidification Committee of the Materials Processing and Manufacturing Division of TMS (The Minerals, Metals & Materials Society)Held during the TMS 2012 Annual Meeting & Exhibition Orlando, Florida, USA, March 11-15, 2012.
The aim of Modeling and Simulation of Microstructure Evolution in Solidifying Alloys is to describe in a clear mathematical language the physics of the solidification structure evolution of cast alloys. The concepts and methodologies presented here for the net-shaped casting and the ingot remelt processes can be applied, with some modifications, to model other solidification processes such as welding and deposition processes. Another aim of the book is to provide simulation examples of the solidification structure modeling in some crucial commercial casting technologies as well as to provide practical techniques for controlling the structure formation during the solidification processes.
Multiscale modeling is becoming essential for accurate, rapid simulation in science and engineering. This book presents the results of three decades of research on multiscale modeling in process engineering from principles to application, and its generalization for different fields. This book considers the universality of meso-scale phenomena for the first time, and provides insight into the emerging discipline that unifies them, meso-science, as well as new perspectives for virtual process engineering. Multiscale modeling is applied in areas including: multiphase flow and fluid dynamics chemical, biochemical and process engineering mineral processing and metallurgical engineering energy and resources materials science and engineering Jinghai Li is Vice-President of the Chinese Academy of Sciences (CAS), a professor at the Institute of Process Engineering, CAS, and leader of the EMMS (Energy-minimizing multiscale) Group. Wei Ge, Wei Wang, Ning Yang and Junwu Wang are professors at the EMMS Group, part of the Institute of Process Engineering, CAS. Xinhua Liu, Limin Wang, Xianfeng He and Xiaowei Wang are associate professors at the EMMS Group, part of the Institute of Process Engineering, CAS. Mooson Kwauk is an emeritus director of the Institute of Process Engineering, CAS, and is an advisor to the EMMS Group.
Computational fluid dynamics (CFD), which uses numerical analysis to predict and model complex flow behaviors and transport processes, has become a mainstream tool in engineering process research and development. Complex chemical processes often involve coupling between dynamics at vastly different length and time scales, as well as coupling of different physical models. The multiscale and multiphysics nature of those problems calls for delicate modeling approaches. This book showcases recent contributions in this field, from the development of modeling methodology to its application in supporting the design, development, and optimization of engineering processes.