Download Free Multiphase Flow Metering Book in PDF and EPUB Free Download. You can read online Multiphase Flow Metering and write the review.

Over the last two decades the development, evaluation and use of MFM systems has been a major focus for the Oil & Gas industry worldwide. Since the early 1990's, when the first commercial meters started to appear, there have been around 2,000 field applications of MFM for field allocation, production optimisation and well testing. So far, many alternative metering systems have been developed, but none of them can be referred to as generally applicable or universally accurate. Both established and novel technologies suitable to measure the flow rates of gas, oil and water in a three-phase flow are reviewed and assessed within this book. Those technologies already implemented in the various commercial meters are evaluated in terms of operational and economical advantages or shortcomings from an operator point of view. The lessons learned about the practical reliability, accuracy and use of the available technology is discussed. The book suggests where the research to develop the next generation of MFM devices will be focused in order to meet the as yet unsolved problems. The book provides a critical and independent review of the current status and future trends of MFM, supported by the authors’ strong background on multiphase flow and by practical examples. These are based on the authors’ direct experience on MFM, gained over many years of research in connection with both operators and service companies. As there are currently no books on the subject of Multiphase Flow Metering for the Oil & Gas industry, this book will fill in the gap and provide a theoretical and practical reference for professionals, academics, and students. * Written by leading scholars and industry experts of international standing* Includes strong coverage of the theoretical background, yet also provides practical examples and current developments* Provides practical reference for professionals, students and academics
Over the last two decades the development, evaluation and use of MFM systems has been a major focus for the Oil & Gas industry worldwide. Since the early 1990's, when the first commercial meters started to appear, there have been around 2,000 field applications of MFM for field allocation, production optimisation and well testing. So far, many alternative metering systems have been developed, but none of them can be referred to as generally applicable or universally accurate. Both established and novel technologies suitable to measure the flow rates of gas, oil and water in a three-phase flow are reviewed and assessed within this book. Those technologies already implemented in the various commercial meters are evaluated in terms of operational and economical advantages or shortcomings from an operator point of view. The lessons learned about the practical reliability, accuracy and use of the available technology is discussed. The book suggests where the research to develop the next generation of MFM devices will be focused in order to meet the as yet unsolved problems. The book provides a critical and independent review of the current status and future trends of MFM, supported by the authors' strong background on multiphase flow and by practical examples. These are based on the authors' direct experience on MFM, gained over many years of research in connection with both operators and service companies. As there are currently no books on the subject of Multiphase Flow Metering for the Oil & Gas industry, this book will fill in the gap and provide a theoretical and practical reference for professionals, academics, and students. * Written by leading scholars and industry experts of international standing * Includes strong coverage of the theoretical background, yet also provides practical examples and current developments * Provides practical reference for professionals, students and academics
Plant Flow Measurement and Control Handbook is a comprehensive reference source for practicing engineers in the field of instrumentation and controls. It covers many practical topics, such as installation, maintenance and potential issues, giving an overview of available techniques, along with recommendations for application. In addition, it covers available flow sensors, such as automation and control. The author brings his 35 years of experience in working in instrumentation and control within the industry to this title with a focus on fluid flow measurement, its importance in plant design and the appropriate control of processes. The book provides a good balance between practical issues and theory and is fully supported with industry case studies and a high level of illustrations to assist learning. It is unique in its coverage of multiphase flow, solid flow, process connection to the plant, flow computation and control. Readers will not only further understand design, but they will also further comprehend integration tactics that can be applied to the plant through a step-by-step design process that goes from installation to operation. Provides specification sheets, engineering drawings, calibration procedures and installation practices for each type of measurement Presents the correct flow meter that is suitable for a particular application Includes a selection table and step-by-step guide to help users make the best decision Cover examples and applications from engineering practice that will aid in understanding and application
Multiphase Transport of Hydrocarbons in Pipes An introduction to multiphase flows in the oil and gas industry The term ‘multiphase flow’ refers to the concurrent flow of oil and/or gas, alongside other substances or materials such as production water, chemical inhibitors, and solids (e.g. sand). This is a critical topic in the oil and gas industry, where the presence of multiple flow phases in pipelines affects deliverability, generates serious complications in predicting flow performance for system design and operation, and requires specific risk mitigation actions and continuous maintenance. Chemical and Mechanical Engineers interested in working in this industry will benefit from understanding the basic theories and practices required to model and operate multiphase flows through pipelines, wells, and other components of the production system. Multiphase Transport of Hydrocarbons in Pipes meets this need with a comprehensive overview of five decades of research into multiphase flow. Incorporating fundamental theories, historic and cutting-edge multiphase flow models, and concrete examples of current and future applications. This book provides a sound technical background for prospective or working engineers in need of understanding this crucial area of industry. Readers will also find: Fundamental principles supporting commercial software Detailed tools for estimating multiphase flow rates through flowlines, wells, and more Integration of conservation principles with thermodynamic and transport properties Coverage of legacy and modern simulation models This book is ideal for flow assurance engineers, facilities engineers, oil and gas production engineers, and process engineers, as well as chemical and mechanical engineering students looking to work in any of these roles.
Practical, comprehensive advice on the design, operation, and performance of flowmeters.
Annotation This book presents the fundamentals of multiphase production with regard to flow simulations in multiphase pipelines, multiphase pumping and multiphase metering. It gives a large range of information on approaches and technologies which can be used today. It is designed for engineers involved in field development, but also for petroleum engineering students.
The oil and gas industry's goal of developing high performing multiphase flow metering systems capable of reducing costs in the exploitation of marginal oil and gas reserves, especially in remote environments, cannot be over emphasised. Development of a cost-effective multiphase flow meter to determine the individual phase flow rates of oil, water and gas was experimentally investigated by means of low cost, simple and non-intrusive commercially available sensors. Features from absolute pressure, differential pressure (axial), gamma densitometer, conductivity and capacitance meters, in combination with pattern recognition techniques were used to detect shifts in flow conditions, such as flow structure, pressure and salinity changes and measured multiphase flow parameters simultaneously without the need for preconditioning or prior knowledge of either phase. The experiments were carried out at the National Engineering Laboratory (NEL) Multiphase facility. Data was sampled at 250 Hz across a wide spectrum of flow conditions. Fluids used were nitrogen gas, oil (Forties and Beryl crude oil - D80, 33o API gravity) and water (salinity levels of 50 and 100 g/l MgSO4). The sensor spool piece was horizontally mounted on a 4-inch (102mm) pipe, and the database was obtained from two different locations on the flow loop. The ability to learn from 'experience' is a feature of neural networks. The use of neural networks allows re-calibration of the measuring system on line through a retraining process when new information becomes available. Some benefits and capabilities of intelligent multiphase flow systems include: · Reduction in the physical size of installations. · Sensor fusion by merging the operating envelopes of different sensors employed provided even better results. · Monitoring of flow conditions, not just flow rate but also composition of components. · Using conventional sensors within the system will present the industry with a much lower cost multiphase meter, and.
Handbook of Multiphase Flow Assurance allows readers to progress in their understanding of basic phenomena and complex operating challenges. The book starts with the fundamentals, but then goes on to discuss phase behavior, fluid sampling, fluid flow properties and fluid characterization. It also covers flow assurance impedance, deliverability, stability and integrity issues, as well as hydraulic, thermal and risk analysis. The inclusion of case studies and references helps provide an industrial focus and practical application that makes the book a novel resource for flow assurance management and an introductory reference for engineers just entering the field of flow assurance. Starts with flow assurance fundamentals, but also includes more complex operating challenges Brings together cross-disciplinary discussions and solutions of flow assurance in a single text Offers case studies and reference guidelines for practical applications
The Concise Industrial Flow Measurement Handbook: A Definitive Practical Guide covers the complete range of modern flow measuring technologies and represents 40 years of experiential knowledge within a wide variety of industries, and from more than 5000 technicians and engineers who have attended the author’s workshops. This book covers all the current technologies in flow measurement, including high accuracy Coriolis, ultrasonic custody transfer, and high accuracy magnetic flowmeters. The book also discusses flow proving and limitations of different proving methods. This volume contains over 300 explanatory drawings and graphs and is presented in a form suitable for both the beginner, with no prior knowledge of the subject, as well as the more advanced specialist. This book is aimed at professionals in the field, including chemical engineers, process engineers, instrumentation and control engineers, and mechanical engineers.