Download Free Multimedia Multiprocessor Systems Book in PDF and EPUB Free Download. You can read online Multimedia Multiprocessor Systems and write the review.

Modern multimedia systems are becoming increasingly multiprocessor and heterogeneous to match the high performance and low power demands placed on them by the large number of applications. The concurrent execution of these applications causes interference and unpredictability in the performance of these systems. In Multimedia Multiprocessor Systems, an analysis mechanism is presented to accurately predict the performance of multiple applications executing concurrently. With high consumer demand the time-to-market has become significantly lower. To cope with the complexity in designing such systems, an automated design-flow is needed that can generate systems from a high-level architectural description such that they are not error-prone and consume less time. Such a design methodology is presented for multiple use-cases -- combinations of active applications. A resource manager is also presented to manage the various resources in the system, and to achieve the goals of performance prediction, admission control and budget enforcement.
Modern multimedia systems are becoming increasingly multiprocessor and heterogeneous to match the high performance and low power demands placed on them by the large number of applications. The concurrent execution of these applications causes interference and unpredictability in the performance of these systems. In Multimedia Multiprocessor Systems, an analysis mechanism is presented to accurately predict the performance of multiple applications executing concurrently.
This book describes analytical models and estimation methods to enhance performance estimation of pipelined multiprocessor systems-on-chip (MPSoCs). A framework is introduced for both design-time and run-time optimizations. For design space exploration, several algorithms are presented to minimize the area footprint of a pipelined MPSoC under a latency or a throughput constraint. A novel adaptive pipelined MPSoC architecture is described, where idle processors are transitioned into low-power states at run-time to reduce energy consumption. Multi-mode pipelined MPSoCs are introduced, where multiple pipelined MPSoCs optimized separately are merged into a single pipelined MPSoC, enabling further reduction of the area footprint by sharing the processors and communication buffers. Readers will benefit from the authors’ combined use of analytical models, estimation methods and exploration algorithms and will be enabled to explore billions of design points in a few minutes.
The continous development of computer technology supported by the VLSI revolution stimulated the research in the field ·of multiprocessors systems. The main motivation for the migration of design efforts from conventional architectures towards multiprocessor ones is the possibi I ity to obtain a significant processing power together with the improvement of price/performance, reliability and flexibility figures. Currently, such systems are moving from research laboratories to real field appl ications. Future technological advances and new generations of components are I ikely to further enhance this trend. This book is intended to provide basic concepts and design methodologies for engineers and researchers involved in the development of mul tiprocessor systems and/or of appl ications based on multiprocessor architectures. In addition the book can be a source of material for computer architecture courses at graduate level. A preliminary knowledge of computer architecture and logical design has been assumed in wri ting this book. Not all the problems related with the development of multiprocessor systems are addressed in th i s book. The covered range spans from the electrical and logical design problems, to architectural issues, to design methodologis for system software. Subj ects such as software development in a multiprocessor environment or loosely coupled multiprocessor systems are out of the scope of the book. Since the basic elements, processors and memories, are now available as standard integrated circuits, the key design problem is how to put them together in an efficient and reliable way.
Modern system-on-chip (SoC) design shows a clear trend toward integration of multiple processor cores on a single chip. Designing a multiprocessor system-on-chip (MPSOC) requires an understanding of the various design styles and techniques used in the multiprocessor. Understanding the application area of the MPSOC is also critical to making proper tradeoffs and design decisions. Multiprocessor Systems-on-Chips covers both design techniques and applications for MPSOCs. Design topics include multiprocessor architectures, processors, operating systems, compilers, methodologies, and synthesis algorithms, and application areas covered include telecommunications and multimedia. The majority of the chapters were collected from presentations made at the International Workshop on Application-Specific Multi-Processor SoC held over the past two years. The workshop assembled internationally recognized speakers on the range of topics relevant to MPSOCs. After having refined their material at the workshop, the speakers are now writing chapters and the editors are fashioning them into a unified book by making connections between chapters and developing common terminology. *Examines several different architectures and the constraints imposed on them *Discusses scheduling, real-time operating systems, and compilers *Analyzes design trade-off and decisions in telecommunications and multimedia applications
The purpose of this book is to evaluate strategies for future system design in multiprocessor system-on-chip (MPSoC) architectures. Both hardware design and integration of new development tools will be discussed. Novel trends in MPSoC design, combined with reconfigurable architectures are a main topic of concern. The main emphasis is on architectures, design-flow, tool-development, applications and system design.
Details a real-world product that applies a cutting-edge multi-core architecture Increasingly demanding modern applications—such as those used in telecommunications networking and real-time processing of audio, video, and multimedia streams—require multiple processors to achieve computational performance at the rate of a few giga-operations per second. This necessity for speed and manageable power consumption makes it likely that the next generation of embedded processing systems will include hundreds of cores, while being increasingly programmable, blending processors and configurable hardware in a power-efficient manner. Multi-Core Embedded Systems presents a variety of perspectives that elucidate the technical challenges associated with such increased integration of homogeneous (processors) and heterogeneous multiple cores. It offers an analysis that industry engineers and professionals will need to understand the physical details of both software and hardware in embedded architectures, as well as their limitations and potential for future growth. Discusses the available programming models spread across different abstraction levels The book begins with an overview of the evolution of multiprocessor architectures for embedded applications and discusses techniques for autonomous power management of system-level parameters. It addresses the use of existing open-source (and free) tools originating from several application domains—such as traffic modeling, graph theory, parallel computing and network simulation. In addition, the authors cover other important topics associated with multi-core embedded systems, such as: Architectures and interconnects Embedded design methodologies Mapping of applications
This book discusses analysis, design and optimization techniques for streaming multiprocessor systems, while satisfying a given area, performance, and energy budget. The authors describe design flows for both application-specific and general purpose streaming systems. Coverage also includes the use of machine learning for thermal optimization at run-time, when an application is being executed. The design flow described in this book extends to thermal and energy optimization with multiple applications running sequentially and concurrently.
The increasing demand of processing a higher number of applications and related data on computing platforms has resulted in reliance on multi-/many-core chips as they facilitate parallel processing. However, there is a desire for these platforms to be energy-efficient and reliable, and they need to perform secure computations for the interest of the whole community. This book provides perspectives on the aforementioned aspects from leading researchers in terms of state-of-the-art contributions and upcoming trends.
Current multimedia and telecom applications require complex, heterogeneous multiprocessor system on chip (MPSoC) architectures with specific communication infrastructure in order to achieve the required performance. Heterogeneous MPSoC includes different types of processing units (DSP, microcontroller, ASIP) and different communication schemes (fast links, non standard memory organization and access). Programming an MPSoC requires the generation of efficient software running on MPSoC from a high level environment, by using the characteristics of the architecture. This task is known to be tedious and error prone, because it requires a combination of high level programming environments with low level software design. This book gives an overview of concepts related to embedded software design for MPSoC. It details a full software design approach, allowing systematic, high-level mapping of software applications on heterogeneous MPSoC. This approach is based on gradual refinement of hardware/software interfaces and simulation models allowing to validate the software at different abstraction levels. This book combines Simulink for high level programming and SystemC for the low level software development. This approach is illustrated with multiple examples of application software and MPSoC architectures that can be used for deep understanding of software design for MPSoC.